Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes Metab J ; 40(5): 376-385, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27098507

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Recent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellular organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation (FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. METHODS: Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histological lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO in the liver. RESULTS: Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal proliferator-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of mitochondrial and peroxisomal FAO was restored by statins. Each statin's effect on increasing FAO and improving NASH was independent on its effect of decreasing cholesterol levels. CONCLUSION: Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by statins may contribute to the prevention of NASH.

2.
Biochem Biophys Res Commun ; 463(4): 853-8, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26051274

RESUMEN

Succinate acts as an extracellular signaling molecule as well as an intermediate in the citric acid cycle. It binds to and activates its specific G protein-coupled receptor 91 (GPR91). GPR91 is present in hepatic stellate cells (HSCs), but its role in hepatic fibrogenesis remains unclear. Cultured HSCs treated with succinate showed increased protein expression of GPR91 and α-smooth muscle actin (α-SMA), markers of fibrogenic response. Succinate also increased mRNA expression of α-SMA, transforming growth factor ß (TGF-ß), and collagen type I. Transfection of siRNA against GPR91 abrogated succinate-induced increases in α-SMA expression. Malonate, an inhibitor of succinate dehydrogenase (SDH), increased succinate levels in cultured HSCs and increased GPR91 and α-SMA expression. Feeding mice a methionine- and choline-deficient (MCD) diet is a widely used technique to create an animal model of nonalcoholic steatohepatitis (NASH). HSCs cultured in MCD media showed significantly decreased SDH activity and increased succinate concentration and GPR91 and α-SMA expression. Similarly, palmitate treatment significantly decreased SDH activity and increased GPR91 and α-SMA expression. Finally, C57BL6/J mice fed the MCD diet had elevated succinate levels in their plasma. The MCD diet also decreased SDH activity, increased succinate concentration, and increased GPR91 and α-SMA expression in isolated HSCs. Collectively, our results show that succinate plays an important role in HSC activation through GPR91 induction, and suggest that succinate and GPR91 may represent new therapeutic targets for modulating hepatic fibrosis.


Asunto(s)
Actinas/biosíntesis , Células Estrelladas Hepáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Mol Cells ; 32(6): 571-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22083307

RESUMEN

Methionine and choline-deficient diet (MCD)-induced fatty liver is one of the best-studied animal models of fatty liver disease. The present study was performed to clarify the relative contributions of individual lipid metabolic pathways to the pathogenesis of MCD-induced fatty liver. Hepatic lipogenesis mediated by the sterol regulatory element-binding protein (SREBP-1c) was increased at 1 week, but not at 6 weeks, of MCD feeding. On the other hand, (14)C-palmitate oxidation did not change at 1 week, but significantly decreased at 6 weeks. This decrease was associated with increased expression of fatty acid translocase, a key enzyme involved in fatty acid uptake. Expression of endoplasmic reticulum stress markers was increased in mice given MCD for both 1 and 6 weeks. These findings suggest the presence of time-dependent differences in lipid metabolism in MCD-induced fatty liver disease: SREBP-1c-mediated lipogenesis is important in the early stages of fatty liver disease, whereas increased fatty acid uptake and decreased fatty acid oxidation become more important in the later stages.


Asunto(s)
Deficiencia de Colina/complicaciones , Hígado Graso/metabolismo , Movilización Lipídica/genética , Metionina/deficiencia , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/etiología , Fibrosis , Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Fosforilación , Factores de Transcripción del Factor Regulador X , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Water Res ; 44(6): 1819-24, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20045547

RESUMEN

Denitrifying bacteria that are switched from oxic to anoxic conditions can experience diauxic lag, which is the time required for re-synthesis of nitrate reductase and other denitrifying enzymes. Pseudomonas denitrificans were exposed to alternating oxic/anoxic phases in a continuous flow reactor with either 4-h or 8-h anoxic phase lengths, in comparison to a measured diauxic lag of 9.5h following steady-state oxic conditions. The P. denitrificans were unable to sustain anoxic growth at either of the anoxic phase lengths tested. Diauxic lag observed after several cycles of alternating oxic/anoxic phases was significantly longer than the diauxic lag measured after steady-state oxic conditions. This may be attributed to increase of cell maintenance energy requirements due to substrate accumulation during anoxic phases and concomitant high specific growth rates during oxic phases.


Asunto(s)
Nitratos/metabolismo , Pseudomonas/crecimiento & desarrollo , Aerobiosis , Anaerobiosis , Biomasa , Reactores Biológicos/microbiología , Simulación por Computador , Metabolismo Energético , Nitritos/análisis , Pseudomonas/enzimología , Pseudomonas/metabolismo , Factores de Tiempo
5.
Biotechnol Bioeng ; 101(3): 642-6, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18496873

RESUMEN

A procedure was developed to characterize diauxic lag of bacteria switching between electron acceptors in continuous culture. In this procedure, a virtual batch growth curve is developed by integrating the time-dependent net specific growth rates of bacteria observed under continuous flow conditions. The length of diauxic lag and the highest net specific growth rate following lag are conveniently estimated from the virtual batch curve. The procedure was found to give reproducible diauxic lag lengths and highest net specific growth rates when applied to experimental data from replicate continuous culture trials.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Aerobiosis , Anaerobiosis , Alimentos , Factores de Tiempo
6.
J Microbiol ; 45(2): 113-21, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17483795

RESUMEN

The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.


Asunto(s)
Bacillus/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Bacterias Formadoras de Endosporas/crecimiento & desarrollo , Aguas del Alcantarillado/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Bacillus/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Bacterias Formadoras de Endosporas/clasificación , Bacterias Formadoras de Endosporas/genética , Datos de Secuencia Molecular , Filogenia , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...