Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 5(12): 3368-3375, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37325533

RESUMEN

Surface engineered iron oxide nanoparticles (IONPs) with catecholic ligands have been investigated as alternative T1 contrast agents. However, complex oxidative chemistry of catechol during IONP ligand exchange causes surface etching, heterogeneous hydrodynamic size distribution, and low colloidal stability because of Fe3+ mediated ligand oxidation. Herein, we report highly stable and compact (∼10 nm) Fe3+ rich ultrasmall IONPs functionalized with a multidentate catechol-based polyethylene glycol polymer ligand through amine-assisted catecholic nanocoating. The IONPs exhibit excellent stability over a broad range of pHs and low nonspecific binding in vitro. We also demonstrate that the resultant NPs have a long circulation time (∼80 min), enabling high resolution T1 magnetic resonance angiography in vivo. These results suggest that the amine assisted catechol-based nanocoating opens a new potential of metal oxide NPs to take a step forward in exquisite bio-application fields.

2.
Biosens Bioelectron ; 213: 114441, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35696868

RESUMEN

Lateral flow assays (LFA) enable development of portable and rapid diagnostic kits; however, their capacity to detect low levels of disease markers remains poor. Here, we report a highly sensitive pregnancy test kit as a proof of concept, by combining brush-type ligand-coated quantum beads (B-type QBs) and nanobody, which can control the antibody orientation and enhance sensitivity. The brush-type ligand provided excellent dispersion stability and high-binding capacity toward antibody. Fc-binding nanobody increased the antigen-binding capacity of conjugated antibodies on the B-type QBs. To facilitate convenient acquisition of the LFA results, we developed a smartphone-based reader with a 3D-printed optical imaging module, and validated the diagnostic performance of the sensing platform. The pregnancy test kit achieved a 5.1 pg mL-1 limit of detection, corresponding to the levels for early-stage detection of heart disease and malaria. Our LFA application can potentially be expanded to diagnosis other diseases by simply changing the antibody pair in the kit.


Asunto(s)
Técnicas Biosensibles , Pruebas de Embarazo , Anticuerpos , Técnicas Biosensibles/métodos , Femenino , Humanos , Ligandos , Embarazo
3.
Nanomaterials (Basel) ; 11(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34835832

RESUMEN

The surface charge of iron oxide nanoparticles (IONPs) plays a critical role in the interactions between nanoparticles and biological components, which significantly affects their toxicity in vitro and in vivo. In this study, we synthesized three differently charged IONPs (negative, neutral, and positive) based on catechol-derived dopamine, polyethylene glycol, carboxylic acid, and amine groups, via reversible addition-fragmentation chain transfer-mediated polymerization (RAFT polymerization) and ligand exchange. The zeta potentials of the negative, neutral, and positive IONPs were -39, -0.6, and +32 mV, respectively, and all three IONPs showed long-term colloidal stability for three months in an aqueous solution without agglomeration. The cytotoxicity of the IONPs was studied by analyzing cell viability and morphological alteration in three human cell lines, A549, Huh-7, and SH-SY5Y. Neither IONP caused significant cellular damage in any of the three cell lines. Furthermore, the IONPs showed no acute toxicity in BALB/c mice, in hematological and histological analyses. These results indicate that our charged IONPs, having high colloidal stability and biocompatibility, are viable for bio-applications.

4.
J Nanosci Nanotechnol ; 14(7): 5297-300, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24758020

RESUMEN

ZnO-PEG-ZnO complex film was fabricated by forming ZnO thin film on the Polyethyleneglycol (PEG) thin film. ZnO thin films were formed by an electrostatic method and ZnO-PEG complex films were fabricated by adsorbing PEG on the ZnO thin films surface with hydrogen bond. The electrochemical characteristic of the ZnO-PEG-ZnO film was analyzed by EQCM techniques. The resonance frequency, resistance and current changes were measured simultaneously with scan rate 100 mV/s, sweep range -1.4-1.2 V in 5 mM ZnCl2 aqueous solution. The electrochemical characteristic of the ZnO-PEG-ZnO complex film was compared with that of the ZnO thin film, and the possible electrode applications of ZnO-PEG-ZnO complex films were examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...