Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315450

RESUMEN

We report here the orchestration of molecular ion networking (MoIN) and a set of computationally assisted structural elucidation approaches in the discovery and assignment of a new class of rearranged 4,5-seco-abietane diterpenoids including serra A (1), which possesses an unusual 6/6/5/5 fused-ring skeleton system, together with two previously unreported diterpenoids serras B-C (2-3) and five known compounds were isolated from Isodon serra (I. serra). The structures were elucidated by spectroscopic analysis in conjunction with computationally assisted structure elucidation tools. In silico, serras A-C (1-3) bind well to PXR, suggesting their potential role in reducing inflammation. The results of serra A (1) with hPXR demonstrated agonist activity with an EC50 value of 15 µM. Serra A (1), graciliflorin F (4), gerardianin C (5), 11,12,15-trihydroxy-8,11,13-abietatrien-7-one (6), rabdosin D (7), and 15-hydroxysalprionin (8) exhibited promising anti-inflammatory activities in lipopolysaccharide (LPS)-induced RAW 267.4 cells, and their inhibition rates on NO production were more than 65% at 10 µM.

2.
J Nat Prod ; 87(8): 2120-2125, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39054259

RESUMEN

Portimine B was isolated from an extract derived from the dinoflagellate Vulcanodinium rugosum, a known producer of the closely related portimine A. Initial molecular characterization studies of portimine B suggested an open tetrahydrofuranyl ring isomer, contrary to the intact ring moiety found in portimine A. In 2023, the Baran lab synthesized both portimines A and B suggesting that both macrocyclic analogs contained the intact tetrahydrofuranyl ring. In this note, we utilize newly acquired NMR data, the i-HMBC NMR experiment, and advanced density functional theory calculations to define the structural divergence, originating from the presence of a transient hydrate.


Asunto(s)
Dinoflagelados , Dinoflagelados/química , Estructura Molecular , Espectroscopía de Resonancia Magnética
3.
J Nat Prod ; 87(8): 2095-2100, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039966

RESUMEN

Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.


Asunto(s)
Espectroscopía de Resonancia Magnética , Cristalografía por Rayos X/métodos , Estructura Molecular , Espectroscopía de Resonancia Magnética/métodos , Aspergillus/química , Xylariales/química , Humanos
4.
Chirality ; 35(9): 540-548, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37142400

RESUMEN

Cannabicitran is a cannabinoid found in levels up to ~10% in commercial "purified" cannabidiol (CBD) extracts. The structure of this natural product was first reported more than 50 years ago. However, few studies have investigated cannabicitran or its origin despite the rapidly increasing interest in the use of cannabinoids for the treatment of a wide range of physiological conditions. Following on a recent detailed NMR and computational characterization of cannabicitran, our group initiated ECD and TDDFT studies aimed at unequivocally determining the absolute configuration of cannabicitran present in Cannabis sativa extracts. To our surprise, we discovered the natural product was racemic, raising questions around its presumed enzymatic origin. Herein, we report the isolation and absolute configuration of (-)-cannabicitran and (+)-cannabicitran. Several possible scenarios for production of the racemate in the plant and/or during extract processing are discussed.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Estereoisomerismo , Cannabidiol/química , Cannabis/química , Extractos Vegetales/química
5.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985422

RESUMEN

Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

6.
Magn Reson Chem ; 61(1): 22-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166190

RESUMEN

Chloride is the most common counterion used to improve aqueous solubility and enhance stability of small molecule active pharmaceutical ingredients. While several analytical techniques, such as titration, HPLC with charged aerosol detection, and ion chromatography, are currently utilized to assay the level of chloride, they have notable limitations, and these instruments may not be readily available. Here, we present a generally applicable 35 Cl solution NMR method to assay the level of chloride in pharmaceutical compounds. The method uses KClO4 as an internal standard for improved accuracy in comparison with external standard methods, and it was found to be robust, linear over three orders of magnitude, precise (<3% RSD), and accurate (<0.5% absolute error).


Asunto(s)
Cloruros , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética , Solubilidad , Preparaciones Farmacéuticas
7.
Magn Reson Chem ; 60(2): 196-202, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617621

RESUMEN

Cannabicitran is an important cannabinoid natural product produced by Cannabis sativa and is often found at surprisingly high levels (up to ~10%) in "purified" commercial cannabidiol (CBD) extract preparations. Despite the prevalence of this molecule in CBD oil and other cannabinoid-related products, and the rapidly expanding interest in cannabinoids for treatment of a wide range of physiological conditions, only unassigned 1 H NMR data and partial unambiguous 13 C assignments have been published. Herein, we report the complete 1 H and 13 C NMR assignments of cannabicitran and comparatively evaluate the performance of several density functional theory (DFT) methods with varying levels of theory for the calculation of NMR chemical shifts.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabinoides/química , Cannabis/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
8.
Chem Commun (Camb) ; 57(46): 5658-5661, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33972980

RESUMEN

In this report, we revise the structure for a previously reported synthetic product proposed to be the 1R,2S-cannabidiol epoxide and reassign it as cannabielsoin using anisotropic NMR and synthetic chemistry methods. These results provide a direct link to the first known biological target and function of cannabielsoin.


Asunto(s)
Cannabidiol/análogos & derivados , Proteínas Wnt/química , beta Catenina/química , Anisotropía , Cannabidiol/análisis , Espectroscopía de Resonancia Magnética , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...