Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 65, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557897

RESUMEN

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patología , Células Mieloides/patología , Microglía/patología , Péptidos beta-Amiloides/metabolismo
2.
Alzheimers Dement ; 20(1): 74-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37461318

RESUMEN

INTRODUCTION: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS: We performed laser capture microdissection of amyloid beta (Aß) plaques, the 50 µm halo around them, tangles with the 50 µm halo around them, and areas distant (> 50 µm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS: Aß plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aß plaques had more differentially expressed genes than tangles. We identified a gradient Aß plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aß plaques. DISCUSSION: Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aß plaques, and are exacerbated by the APOE ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares , Apolipoproteína E4/genética , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Transcriptoma , Placa Amiloide/metabolismo , Perfilación de la Expresión Génica
3.
J Neurosci ; 43(24): 4541-4557, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37208174

RESUMEN

Vascular endothelial cells play an important role in maintaining brain health, but their contribution to Alzheimer's disease (AD) is obscured by limited understanding of the cellular heterogeneity in normal aged brain and in disease. To address this, we performed single nucleus RNAseq on tissue from 32 human AD and non-AD donors (19 female, 13 male) each with five cortical regions: entorhinal cortex, inferior temporal gyrus, prefrontal cortex, visual association cortex, and primary visual cortex. Analysis of 51,586 endothelial cells revealed unique gene expression patterns across the five regions in non-AD donors. Alzheimer's brain endothelial cells were characterized by upregulated protein folding genes and distinct transcriptomic differences in response to amyloid ß plaques and cerebral amyloid angiopathy. This dataset demonstrates previously unrecognized regional heterogeneity in the endothelial cell transcriptome in both aged non-AD and AD brain.SIGNIFICANCE STATEMENT In this work, we show that vascular endothelial cells collected from five different brain regions display surprising variability in gene expression. In the presence of Alzheimer's disease pathology, endothelial cell gene expression is dramatically altered with clear differences in regional and temporal changes. These findings help explain why certain brain regions appear to differ in susceptibility to disease-related vascular remodeling events that may impact blood flow.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Masculino , Femenino , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/genética , Placa Amiloide/patología , Núcleo Solitario/metabolismo , Corteza Entorrinal/metabolismo
4.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993332

RESUMEN

INTRODUCTION: Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE -linked differences remain unclear. METHODS: We performed laser capture microdissection of Aß plaques, the 50µm halo around them, tangles with the 50µm halo around them, and areas distant (>50µm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS: Aß plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aß plaques had more differentially expressed genes than tangles. We identified a gradient Aß plaque>peri-plaque>tangle>distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aß plaques. DISCUSSION: Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aß plaques, and are exacerbated by the APOE ε4 allele.

5.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824974

RESUMEN

Vascular endothelial cells play an important role in maintaining brain health, but their contribution to Alzheimer's disease (AD) is obscured by limited understanding of the cellular heterogeneity in normal aged brain and in disease. To address this, we performed single nucleus RNAseq on tissue from 32 AD and non-AD donors each with five cortical regions: entorhinal cortex, inferior temporal gyrus, prefrontal cortex, visual association cortex and primary visual cortex. Analysis of 51,586 endothelial cells revealed unique gene expression patterns across the five regions in non-AD donors. Alzheimer's brain endothelial cells were characterized by upregulated protein folding genes and distinct transcriptomic differences in response to amyloid beta plaques and cerebral amyloid angiopathy (CAA). This dataset demonstrates previously unrecognized regional heterogeneity in the endothelial cell transcriptome in both aged non-AD and AD brain. Significance Statement: In this work, we show that vascular endothelial cells collected from five different brain regions display surprising variability in gene expression. In the presence of Alzheimer's disease pathology, endothelial cell gene expression is dramatically altered with clear differences in regional and temporal changes. These findings help explain why certain brain regions appear to differ in susceptibility to disease-related vascular remodeling events that may impact blood flow.

6.
Brain Behav Immun ; 107: 403-413, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395958

RESUMEN

There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.


Asunto(s)
Espinas Dendríticas
7.
Acta Neuropathol ; 141(5): 681-696, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33609158

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by abnormal extracellular aggregates of amyloid-ß and intraneuronal hyperphosphorylated tau tangles and neuropil threads. Microglia, the tissue-resident macrophages of the central nervous system (CNS), are important for CNS homeostasis and implicated in AD pathology. In amyloid mouse models, a phagocytic/activated microglia phenotype has been identified. How increasing levels of amyloid-ß and tau pathology affect human microglia transcriptional profiles is unknown. Here, we performed snRNAseq on 482,472 nuclei from non-demented control brains and AD brains containing only amyloid-ß plaques or both amyloid-ß plaques and tau pathology. Within the microglia population, distinct expression profiles were identified of which two were AD pathology-associated. The phagocytic/activated AD1-microglia population abundance strongly correlated with tissue amyloid-ß load and localized to amyloid-ß plaques. The AD2-microglia abundance strongly correlated with tissue phospho-tau load and these microglia were more abundant in samples with overt tau pathology. This full characterization of human disease-associated microglia phenotypes provides new insights in the pathophysiological role of microglia in AD and offers new targets for microglia-state-specific therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Microglía/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino
8.
Mol Psychiatry ; 26(6): 1808-1831, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32071385

RESUMEN

Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.


Asunto(s)
Microglía , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal , Encéfalo , Modelos Animales de Enfermedad , Femenino , Inflamación , Factor Estimulante de Colonias de Macrófagos , Ratones , Neuronas , Embarazo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
9.
Cell Rep ; 27(4): 1293-1306.e6, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018141

RESUMEN

Gene expression profiles of more than 10,000 individual microglial cells isolated from cortex and hippocampus of male and female AppNL-G-F mice over time demonstrate that progressive amyloid-ß accumulation accelerates two main activated microglia states that are also present during normal aging. Activated response microglia (ARMs) are composed of specialized subgroups overexpressing MHC type II and putative tissue repair genes (Dkk2, Gpnmb, and Spp1) and are strongly enriched with Alzheimer's disease (AD) risk genes. Microglia from female mice progress faster in this activation trajectory. Similar activated states are also found in a second AD model and in human brain. Apoe, the major genetic risk factor for AD, regulates the ARMs but not the interferon response microglia (IRMs). Thus, the ARMs response is the converging point for aging, sex, and genetic AD risk factors.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Microglía/patología , Placa Amiloide/patología , Envejecimiento/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilinas/fisiología , Caracteres Sexuales
10.
J Neurosci ; 35(26): 9764-81, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134658

RESUMEN

Peripheral and CNS inflammation leads to aberrations in developmental and postnatal neurogenesis, yet little is known about the mechanism linking inflammation to neurogenic abnormalities. Specific miRs regulate peripheral and CNS inflammatory responses. miR-155 is the most significantly upregulated miR in primary murine microglia stimulated with lipopolysaccharide (LPS), a proinflammatory Toll-Like Receptor 4 ligand. Here, we demonstrate that miR-155 is essential for robust IL6 gene induction in microglia under LPS stimulation in vitro. LPS-stimulated microglia enhance astrogliogenesis of cocultured neural stem cells (NSCs), whereas blockade of IL6 or genetic ablation of microglial miR-155 restores neural differentiation. miR-155 knock-out mice show reversal of LPS-induced neurogenic deficits and microglial activation in vivo. Moreover, mice with transgenic elevated expression of miR-155 in nestin-positive neural and hematopoietic stem cells, including microglia, show increased cell proliferation and ectopically localized doublecortin-positive immature neurons and radial glia-like cells in the hippocampal dentate gyrus (DG) granular cell layer. Microglia have proliferative and neurogenic effects on NSCs, which are significantly altered by microglial miR-155 overexpression. In addition, miR-155 elevation leads to increased microglial numbers and amoeboid morphology in the DG. Our study demonstrates that miR-155 is essential for inflammation-induced neurogenic deficits via microglial activation and induction of IL6 and is sufficient for disrupting normal hippocampal development.


Asunto(s)
Regulación de la Expresión Génica/genética , Hipocampo/patología , Inflamación/genética , Inflamación/patología , MicroARNs/metabolismo , Neurogénesis/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Inflamación/inducido químicamente , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Proteínas de Microfilamentos/metabolismo , Nestina/genética , Nestina/metabolismo , Neurogénesis/efectos de los fármacos , Embarazo
11.
Am J Pathol ; 184(3): 808-18, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24418258

RESUMEN

Tau-tubulin kinase-1 (TTBK1) is a central nervous system (CNS)-specific protein kinase implicated in the pathological phosphorylation of tau. TTBK1-transgenic mice show enhanced neuroinflammation in the CNS. Double-transgenic mice expressing TTBK1 and frontotemporal dementia with parkinsonism-17-linked P301L (JNPL3) tau mutant (TTBK1/JNPL3) show increased accumulation of oligomeric tau protein in the CNS and enhanced loss of motor neurons in the ventral horn of the lumbar spinal cord. To determine the role of TTBK1-induced neuroinflammation in tauopathy-related neuropathogenesis, age-matched TTBK1/JNPL3, JNPL3, TTBK1, and non-transgenic littermates were systematically characterized. There was a striking switch in the activation phenotype and population of mononuclear phagocytes (resident microglia and infiltrating macrophages) in the affected spinal cord region: JNPL3 mice showed accumulation of alternatively activated microglia, whereas TTBK1 and TTBK1/JNPL3 mice showed accumulation of classically activated infiltrating peripheral monocytes. In addition, expression of chemokine ligand 2, a chemokine important for the recruitment of peripheral monocytes, was enhanced in TTBK1 and TTBK1/JNPL3 but not in other groups in the spinal cord. Furthermore, primary cultured mouse motor neurons showed axonal degeneration after transient expression of the TTBK1 gene or treatment with conditioned media derived from lipopolysaccharide-stimulated microglia; this was partially blocked by silencing of the endogenous TTBK1 gene in neurons. These data suggest that TTBK1 accelerates motor neuron neurodegeneration by recruiting proinflammatory monocytes and enhancing sensitivity to neurotoxicity in inflammatory conditions.


Asunto(s)
Demencia Frontotemporal/genética , Degeneración Nerviosa/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas tau/genética , Animales , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Ratones Transgénicos , Mutación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Médula Espinal/patología , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo
12.
J Neuroimmune Pharmacol ; 9(2): 92-101, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24057103

RESUMEN

Fibroblast growth factor-2 (FGF2), also known as basic FGF, is a multi-functional growth factor. One of the 22-member FGF family, it signals through receptor tyrosine kinases encoding FGFR1-4. FGF2 activates FGFRs in cooperation with heparin or heparin sulfate proteoglycan to induce its pleiotropic effects in different tissues and organs, which include potent angiogenic effects and important roles in the differentiation and function of the central nervous system (CNS). FGF2 is crucial to development of the CNS, which explains its importance in adult neurogenesis. During development, high levels of FGF2 are detected from neurulation onwards. Moreover, developmental expression of FGF2 and its receptors is temporally and spatially regulated, concurring with development of specific brain regions including the hippocampus and substantia nigra pars compacta. In adult neurogenesis, FGF2 has been implicated based on its expression and regulation of neural stem and progenitor cells in the neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. FGFR1 signaling also modulates inflammatory signaling through the surface glycoprotein CD200, which regulates microglial activation. Because of its importance in adult neurogenesis and neuroinflammation, manipulation of FGF2/FGFR1 signaling has been a focus of therapeutic development for neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. Novel strategies include intranasal administration of FGF2, administration of an NCAM-derived FGFR1 agonist, and chitosan-based nanoparticles for the delivery of FGF2 in pre-clinical animal models. In this review, we highlight current research towards therapeutic interventions targeting FGF2/FGFR1 in neurodegenerative disorders.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Degeneración Nerviosa/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Animales , Humanos
13.
PLoS One ; 8(11): e79416, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244499

RESUMEN

Neuroinflammation contributes to many neurologic disorders including Alzheimer's disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide ('M1'-skewing) and interleukin-4 ('M2a'-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Microglía/metabolismo , ARN Mensajero/genética , Transcriptoma , Animales , Análisis por Conglomerados , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-4/farmacología , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Modelos Biológicos , Fenotipo , Embarazo , Interferencia de ARN , Reproducibilidad de los Resultados
14.
J Comp Neurol ; 521(10): 2321-58, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23239101

RESUMEN

Defining how arginine vasopressin (AVP) acts centrally to regulate homeostasis and behavior is problematic, as AVP is made in multiple nuclei in the hypothalamus (i.e., paraventricular [PVN], supraoptic [SON], and suprachiasmatic [SCN]) and extended amygdala (i.e., bed nucleus of the stria terminalis [BNST] and medial amygdala [MeA]), and these groups of neurons have extensive projections throughout the brain. To understand the function of AVP, it is essential to know the site of origin of various projections. In mice, we used gonadectomy to eliminate gonadal steroid hormone-dependent expression of AVP in the BNST and MeA and electrolytic lesions to eliminate the SCN, effectively eliminating those AVP-immunoreactive projections; we also quantified AVP-immunoreactive fiber density in gonadectomized and sham-operated male and female mice to examine sex differences in AVP innervation. Our results suggest that the BNST/MeA AVP system innervates regions containing major modulatory neurotransmitters (e.g., serotonin and dopamine) and thus may be involved in regulating behavioral state. Furthermore, this system may be biased toward the regulation of male behavior, given the numerous regions in which males have a denser AVP-immunoreactive innervation than females. AVP from the SCN is found in regions important for the regulation of hormone output and behavior. Innervation from the PVN and SON is found in brain regions that likely work in concert with the well-known peripheral AVP actions of controlling homeostasis and stress response; female-biased sex differences in this system may be related to the heightened stress response observed in females.


Asunto(s)
Arginina Vasopresina/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Caracteres Sexuales , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Castración , Recuento de Células , Dopamina/metabolismo , Electrólitos/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Serotonina/metabolismo , Núcleo Supraquiasmático/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...