Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608019

RESUMEN

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células de Schwann , Animales , Ratones , Vaina de Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Procesamiento Proteico-Postraduccional
2.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340725

RESUMEN

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Activación Metabólica , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Fibrosis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
3.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541251

RESUMEN

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Hígado/metabolismo , Lisina/metabolismo , Glucosa/metabolismo
4.
Front Cell Neurosci ; 16: 992221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159399

RESUMEN

Background: Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients' quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods: To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results: Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion: Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.

5.
J Hepatol ; 77(1): 15-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167910

RESUMEN

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Células Estrelladas Hepáticas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Colina , Ácidos Grasos/metabolismo , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Ratones
6.
Adv Drug Deliv Rev ; 181: 114088, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942276

RESUMEN

The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).


Asunto(s)
Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/metabolismo , Neoplasias/fisiopatología , ARN/metabolismo , ARN/farmacología , Animales , Sistemas de Liberación de Medicamentos/métodos , Silenciador del Gen , Humanos , Mediadores de Inflamación/metabolismo , Peso Molecular , Neoplasias/tratamiento farmacológico , ARN Mensajero/farmacología , ARN Interferente Pequeño/farmacología
7.
Nat Commun ; 12(1): 5068, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417460

RESUMEN

p53 regulates several signaling pathways to maintain the metabolic homeostasis of cells and modulates the cellular response to stress. Deficiency or excess of nutrients causes cellular metabolic stress, and we hypothesized that p53 could be linked to glucose maintenance. We show here that upon starvation hepatic p53 is stabilized by O-GlcNAcylation and plays an essential role in the physiological regulation of glucose homeostasis. More specifically, p53 binds to PCK1 promoter and regulates its transcriptional activation, thereby controlling hepatic glucose production. Mice lacking p53 in the liver show a reduced gluconeogenic response during calorie restriction. Glucagon, adrenaline and glucocorticoids augment protein levels of p53, and administration of these hormones to p53 deficient human hepatocytes and to liver-specific p53 deficient mice fails to increase glucose levels. Moreover, insulin decreases p53 levels, and over-expression of p53 impairs insulin sensitivity. Finally, protein levels of p53, as well as genes responsible of O-GlcNAcylation are elevated in the liver of type 2 diabetic patients and positively correlate with glucose and HOMA-IR. Overall these results indicate that the O-GlcNAcylation of p53 plays an unsuspected key role regulating in vivo glucose homeostasis.


Asunto(s)
Acetilglucosamina/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Secuencia de Bases , Restricción Calórica , Línea Celular , Colforsina/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Epinefrina/metabolismo , Glucagón/metabolismo , Glucocorticoides/metabolismo , Gluconeogénesis/efectos de los fármacos , Glicosilación , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Ácido Pirúvico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
8.
Cancer Res ; 81(11): 2874-2887, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771899

RESUMEN

Lipid metabolism rearrangements in nonalcoholic fatty liver disease (NAFLD) contribute to disease progression. NAFLD has emerged as a major risk for hepatocellular carcinoma (HCC), where metabolic reprogramming is a hallmark. Identification of metabolic drivers might reveal therapeutic targets to improve HCC treatment. Here, we investigated the contribution of transcription factors E2F1 and E2F2 to NAFLD-related HCC and their involvement in metabolic rewiring during disease progression. In mice receiving a high-fat diet (HFD) and diethylnitrosamine (DEN) administration, E2f1 and E2f2 expressions were increased in NAFLD-related HCC. In human NAFLD, E2F1 and E2F2 levels were also increased and positively correlated. E2f1 -/- and E2f2 -/- mice were resistant to DEN-HFD-induced hepatocarcinogenesis and associated lipid accumulation. Administration of DEN-HFD in E2f1 -/- and E2f2 -/- mice enhanced fatty acid oxidation (FAO) and increased expression of Cpt2, an enzyme essential for FAO, whose downregulation is linked to NAFLD-related hepatocarcinogenesis. These results were recapitulated following E2f2 knockdown in liver, and overexpression of E2f2 elicited opposing effects. E2F2 binding to the Cpt2 promoter was enhanced in DEN-HFD-administered mouse livers compared with controls, implying a direct role for E2F2 in transcriptional repression. In human HCC, E2F1 and E2F2 expressions inversely correlated with CPT2 expression. Collectively, these results indicate that activation of the E2F1-E2F2-CPT2 axis provides a lipid-rich environment required for hepatocarcinogenesis. SIGNIFICANCE: These findings identify E2F1 and E2F2 transcription factors as metabolic drivers of hepatocellular carcinoma, where deletion of just one is sufficient to prevent disease. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2874/F1.large.jpg.


Asunto(s)
Carcinoma Hepatocelular/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F2/metabolismo , Lípidos/análisis , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Carcinógenos , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/genética , Regulación de la Expresión Génica , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Regiones Promotoras Genéticas
9.
Dev Neurobiol ; 81(5): 490-506, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628805

RESUMEN

Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Axones/fisiología , Humanos , Regeneración Nerviosa , Neuroglía/fisiología , Sistema Nervioso Periférico , Células de Schwann/fisiología
10.
J Clin Invest ; 130(7): 3848-3864, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315290

RESUMEN

Cancer cells can develop a strong addiction to discrete molecular regulators, which control the aberrant gene expression programs that drive and maintain the cancer phenotype. Here, we report the identification of the RNA-binding protein HuR/ELAVL1 as a central oncogenic driver for malignant peripheral nerve sheath tumors (MPNSTs), which are highly aggressive sarcomas that originate from cells of the Schwann cell lineage. HuR was found to be highly elevated and bound to a multitude of cancer-associated transcripts in human MPNST samples. Accordingly, genetic and pharmacological inhibition of HuR had potent cytostatic and cytotoxic effects on tumor growth, and strongly suppressed metastatic capacity in vivo. Importantly, we linked the profound tumorigenic function of HuR to its ability to simultaneously regulate multiple essential oncogenic pathways in MPNST cells, including the Wnt/ß-catenin, YAP/TAZ, RB/E2F, and BET pathways, which converge on key transcriptional networks. Given the exceptional dependency of MPNST cells on HuR for survival, proliferation, and dissemination, we propose that HuR represents a promising therapeutic target for MPNST treatment.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular , Proteína 1 Similar a ELAV/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Vaina del Nervio/metabolismo , Transducción de Señal , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proteína 1 Similar a ELAV/genética , Humanos , Ratones , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/patología
11.
Methods Mol Biol ; 1791: 81-93, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30006703

RESUMEN

Schwann cells are the main glial cells of the peripheral nervous system (PNS) and play key roles in peripheral nerve development and function, including providing myelin that is essential for normal movement and sensation in the adult. Schwann cells can be readily destabilized by a wide variety of distinct conditions that range from nerve injury to immune assaults, metabolic disturbances, microbial infections, or genetic defects, leading to the breakdown of myelin (demyelination) and a subsequent switch in phenotypic states. This striking feature of Schwann cells forms the cornerstone of several debilitating and even fatal PNS neurological disorders that include the demyelinating neuropathies Guillain Barré syndrome (GBS) and Charcot-Marie-Tooth disease (CMT), and PNS cancers, including Neurofibromatosis.Primary Schwann cell cultures have proved a valuable tool to dissect key mechanisms that regulate proliferation, survival, differentiation, and myelination of these glial cell types. In this chapter, we describe the steps involved in the isolation and purification of Schwann cells from rodent peripheral nerves and the use of these cultures to model myelination in vitro.


Asunto(s)
Separación Celular/métodos , Células de Schwann , Animales , Técnicas de Cultivo de Célula , Citometría de Flujo , Inmunohistoquímica , Ratones , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Cultivo Primario de Células , Ratas , Roedores , Células de Schwann/citología , Células de Schwann/metabolismo
12.
Methods Mol Biol ; 1791: 193-206, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30006711

RESUMEN

Autophagy is a key cellular mechanism involved in the degradation of long-lived proteins and organelles. We and others have previously shown that Schwann cells are able to degrade their own myelin by a form of selective autophagy, or myelinophagy. There is now increasing evidence that myelinophagy could also be aberrantly activated in other demyelinating diseases, including hereditary or inflammatory neuropathies, implicating this pathway in the pathogenesis of these disorders. In this chapter, we describe our protocol to monitor autophagy in peripheral nerves, using the autophagy flux assay. This assay can be useful to compare basal and demyelination-induced autophagy in genetic mice models, or after treatment with specific compounds.


Asunto(s)
Autofagia , Técnicas de Cultivo de Célula , Células de Schwann/metabolismo , Animales , Animales Recién Nacidos , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/metabolismo , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas
13.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26394163

RESUMEN

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Asunto(s)
Autofagia/fisiología , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Metionina/sangre , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/sangre , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hígado Graso/patología , Humanos , Metilación , Ratones
14.
J Cell Biol ; 210(1): 153-68, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26150392

RESUMEN

Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.


Asunto(s)
Autofagia , Vaina de Mielina/patología , Traumatismos de los Nervios Periféricos/patología , Animales , Células Cultivadas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metabolismo de los Lípidos , Ratones Transgénicos , Vaina de Mielina/fisiología , Traumatismos de los Nervios Periféricos/enzimología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Nervio Ciático/patología , Serina-Treonina Quinasas TOR/metabolismo , Degeneración Walleriana/patología
15.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687756

RESUMEN

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/psicología , Cognición/fisiología , Glicina N-Metiltransferasa/deficiencia , Hipocampo/enzimología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , S-Adenosilmetionina/fisiología , Animales , Ciclina E/biosíntesis , Ciclina E/genética , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/fisiología , Hipocampo/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/etiología , Metionina/metabolismo , Metionina Adenosiltransferasa/deficiencia , Metionina Adenosiltransferasa/genética , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Prueba de Desempeño de Rotación con Aceleración Constante , S-Adenosilmetionina/biosíntesis
16.
Neuron ; 81(5): 1024-1039, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24607226

RESUMEN

Axonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, providing a mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations.


Asunto(s)
Metilación de ADN/genética , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , S-Adenosilmetionina/metabolismo , Células de Schwann/metabolismo , Animales , Diferenciación Celular/fisiología , División Celular/fisiología , Femenino , Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Vaina de Mielina/fisiología , Nervios Periféricos/citología , Cultivo Primario de Células , Ratas , Células de Schwann/citología
17.
Alcohol Res ; 35(1): 25-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24313162

RESUMEN

Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis.


Asunto(s)
Carcinogénesis/inducido químicamente , Depresores del Sistema Nervioso Central/efectos adversos , Epigénesis Genética/efectos de los fármacos , Etanol/efectos adversos , Neoplasias/genética , Consumo de Bebidas Alcohólicas , Alcoholismo , Neoplasias de la Mama/genética , Carcinogénesis/genética , Depresores del Sistema Nervioso Central/metabolismo , Neoplasias Colorrectales/genética , Metilación de ADN/genética , Etanol/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/genética , Humanos
18.
J Neurosci Res ; 91(1): 105-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23073893

RESUMEN

The transcription factor Krox-20 (Egr2) is a master regulator of Schwann cell myelination. In mice from which calcineurin B had been excised in cells of the neural crest lineage, calcineurin-nuclear factor of activated T cells (NFAT) signaling was required for neuregulin-related Schwann cell myelination (Kao et al. [2009] Immunity 12:359-372). Whether NFAT signaling required simultaneous elevation of intracellular cAMP levels was not explored. In vivo, Krox-20 expression requires continuous axon-Schwann cell signaling that in Schwann cell cultures can be mimicked by elevation of intracellular cAMP. We have investigated the role of the calcineurin-NFAT pathway in Krox-20 induction in purified rat Schwann cell cultures. Activation of this pathway requires elevation of intracellular Ca(2+) levels. The calcium ionophore A23187 or ionomycin was used to increase intracellular Ca(2+) levels in Schwann cell cultures that had been treated with dibutyryl cAMP to induce Krox-20. Increase in Ca(2+) levels significantly potentiated Krox-20 induction, determined by Krox-20 immunolabeling of individual cells and Western blotting. Levels of the myelin proteins periaxin and P(0) were also elevated. The potentiating effect was blocked by cyclosporin A, a specific blocker of the calcineurin-NFAT pathway. We found that, in the absence of cAMP elevation, treatment with A23187 alone failed to induce Krox-20 expression, indicating that NFAT upregulation of Krox-20 requires elevation of cAMP levels in Schwann cells. P-VIVIT, another specific inhibitor of calcineurin-NFAT interaction, blocked Krox-20 induction in response to dibutyryl cAMP and ionophore. HA-NFAT1 (1-460)-GFP translocated to the nucleus on treatment with dibutyryl cAMP with or without added ionophore. NFAT isoforms 1-4 were detected in purified Schwann cells by quantitative RT-PCR.


Asunto(s)
AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción NFATC/metabolismo , Células de Schwann/metabolismo , Animales , Western Blotting , Inmunohistoquímica , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Transfección , Regulación hacia Arriba
19.
Neuron ; 75(4): 633-47, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22920255

RESUMEN

The radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue.


Asunto(s)
Regeneración Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Células de Schwann/metabolismo , Neuropatía Ciática/patología , Adenoviridae/genética , Análisis de Varianza , Animales , Benzofuranos , Movimiento Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Vectores Genéticos/fisiología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/ultraestructura , Ratones , Ratones Transgénicos , Técnicas Analíticas Microfluídicas , Microscopía Electrónica de Transmisión , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Neuronas Motoras/ultraestructura , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Proteínas Proto-Oncogénicas c-jun/genética , Células de Schwann/patología , Células de Schwann/ultraestructura , Neuropatía Ciática/metabolismo , Neuropatía Ciática/fisiopatología , Neuropatía Ciática/terapia , Médula Espinal/patología
20.
Hepatology ; 56(5): 1870-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22576182

RESUMEN

UNLABELLED: RNA-binding proteins (RBPs) play a major role in the control of messenger RNA (mRNA) turnover and translation rates. We examined the role of the RBP, human antigen R (HuR), during cholestatic liver injury and hepatic stellate cell (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and alpha smooth muscle actin (α-SMA) expression. HuR expression increased in activated HSCs from bile duct ligation mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration and controlled the expression of several mRNAs involved in these processes (e.g., Actin, matrix metalloproteinase 9, and cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localization, controlled by PDGF, by extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3-kinase activation as well as ERK/LKB1 (liver kinase B1) activation, respectively. More important, we identified the tumor suppressor, LKB1, as a novel downstream target of PDGF-induced ERK activation in HSCs. HuR also controlled transforming growth factor beta (TGF-ß)-induced profibrogenic actions by regulating the expression of TGF-ß, α-SMA, and p21. This was likely the result of an increased cytoplasmic localization of HuR, controlled by TGF-ß-induced p38 mitogen-activated protein kinase activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSCs in human cirrhotic samples. CONCLUSION: Our results show that HuR is important for the pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-ß.


Asunto(s)
Antígenos de Superficie/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Animales , Antígenos de Superficie/genética , Butadienos/farmacología , Tetracloruro de Carbono , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Conducto Colédoco , Proteínas ELAV , Proteína 1 Similar a ELAV , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/fisiología , Humanos , Ligadura , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Ratones , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/efectos de los fármacos , Proteínas de Unión al ARN/genética , Ratas , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA