Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 4): 119126, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734293

RESUMEN

In estuaries, phytoplankton are faced with strong environmental forcing (e.g. high turbidity, salinity gradients). Taxa that appear under such conditions may play a critical role in maintaining food webs and biological carbon pumping, but knowledge about estuarine biota remains limited. This is also the case in the Elbe estuary where the lower 70 km of the water body are largely unexplored. In the present study, we investigated the phytoplankton composition in the Elbe estuary via metabarcoding. Our aim was to identify key taxa in the unmonitored reaches of this ecosystem and compare our results from the monitored area with available microscopy data. Phytoplankton communities followed distinct seasonal and spatial patterns. Community composition was similar across methods. Contributions of key classes and genera were correlated to each other (p < 0.05) when obtained from reads and biovolume (R2 = 0.59 and 0.33, respectively). Centric diatoms (e.g. Stephanodiscus) were the dominant group - comprising on average 55 % of the reads and 66-69 % of the biovolume. However, results from metabarcoding imply that microscopy underestimates the prevalence of picophytoplankton and flagellates with a potential for mixotrophy (e.g. cryptophytes). This might be due to their small size and sensitivity to fixation agents. We argue that mixotrophic flagellates are ecologically relevant in the mid to lower estuary, where, e.g., high turbidity render living conditions rather unfavorable, and skills such as phagotrophy provide fundamental advantages. Nevertheless, further findings - e.g. important taxa missing from the metabarcoding dataset - emphasize potential limitations of this method and quantitative biases can result from varying numbers of gene copies in different taxa. Further research should address these methodological issues but also shed light on the causal relationship of taxa with the environmental conditions, also with respect to active mixotrophic behavior.

2.
Microbiome ; 12(1): 65, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539229

RESUMEN

BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.


Asunto(s)
Lagos , Procesos Fototróficos , Lagos/microbiología , Bacterias/genética , Biomasa , Bacterias Aerobias/genética , Bacterias Aerobias/metabolismo , Fitoplancton/genética
3.
Genes (Basel) ; 14(5)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37239412

RESUMEN

In recent years, our understanding of the roles of bacterial communities in the Antarctic Ocean has substantially improved. It became evident that Antarctic marine bacteria are metabolically versatile, and even closely related strains may differ in their functionality and, therefore, affect the ecosystem differently. Nevertheless, most studies have been focused on entire bacterial communities, with little attention given to individual taxonomic groups. Antarctic waters are strongly influenced by climate change; thus, it is crucial to understand how changes in environmental conditions, such as changes in water temperature and salinity fluctuations, affect bacterial species in this important area. In this study, we show that an increase in water temperature of 1 °C was enough to alter bacterial communities on a short-term temporal scale. We further show the high intraspecific diversity of Antarctic bacteria and, subsequently, rapid intra-species succession events most likely driven by various temperature-adapted phylotypes. Our results reveal pronounced changes in microbial communities in the Antarctic Ocean driven by a single strong temperature anomaly. This suggests that long-term warming may have profound effects on bacterial community composition and presumably functionality in light of continuous and future climate change.


Asunto(s)
Bacterias , Ecosistema , Regiones Antárticas , Temperatura , Bacterias/genética , Agua
4.
Microorganisms ; 10(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893569

RESUMEN

Research on Plant Growth-Promoting Bacteria (PGPB) has focused much more on rhizospheric bacteria. However, PGPB associated with toxic cyanobacterial bloom (TCB) could enter the rhizosphere through irrigation water, helping plants such as Pisum sativum L. (pea) overcome oxidative stress induced by microcystin (MC) and improve plant growth and nutritional value. This study aimed to isolate bacteria associated with toxic cyanobacteria, test PGPB properties, and inoculate them as a consortium to pea seedlings irrigated with MC to investigate their role in plant protection as well as in improving growth and nutritional value. Two bacterioplankton isolates and one rhizosphere isolate were isolated and purified on a mineral salt medium supplemented with 1000 µg/L MC and identified via their 16S rRNA gene. The mixed strains were inoculated to pea seedlings in pots irrigated with 0, 50, and 100 µg/L MC. We measured the morphological and physiological parameters of pea plants at maturity and evaluated the efficiency of the plant's enzymatic and non-enzymatic antioxidant responses to assess the role and contribution of PGPB. Both bacterioplankton isolates were identified as Starkeya sp., and the rhizobacterium was identified as Brevundimonas aurantiaca. MC addition significantly (p < 0.05) reduced all the growth parameters of the pea, i.e., total chlorophyll content, leaf quantum yield, stomatal conductance, carotenoids, and polyphenol contents, in an MC concentration-dependent manner, while bacterial presence positively affected all the measured parameters. In the MC treatment, the levels of the pea's antioxidant traits, including SOD, CAT, POD, PPO, GST, and ascorbic acid, were increased in the sterile pots. In contrast, these levels were reduced with double and triple PGPB addition. Additionally, nutritional values such as sugars, proteins, and minerals (Ca and K) in pea fruits were reduced under MC exposure but increased with PGPB addition. Overall, in the presence of MC, PGPB seem to positively interact with pea plants and thus may constitute a natural alternative for soil fertilization when irrigated with cyanotoxin-contaminated water, increasing the yield and nutritional value of crops.

5.
Sci Total Environ ; 845: 157321, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839872

RESUMEN

Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.


Asunto(s)
Microbiota , Urbanización , Bacterias , Lagos/microbiología , ARN Ribosómico 16S/genética
6.
ISME J ; 16(9): 2242-2254, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764676

RESUMEN

Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.


Asunto(s)
Quitridiomicetos , Diatomeas , Parásitos , Animales , Quitridiomicetos/genética , Diatomeas/genética , Diatomeas/microbiología , Hongos/genética , Lagos/microbiología , Fitoplancton/microbiología
7.
Front Microbiol ; 13: 805694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308360

RESUMEN

Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.

8.
J Fungi (Basel) ; 7(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34829255

RESUMEN

The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.

9.
ISME J ; 15(6): 1735-1750, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33462364

RESUMEN

Carbon turnover in aquatic environments is dependent on biochemical properties of organic matter (OM) and its degradability by the surrounding microbial community. Non-additive interactive effects represent a mechanism where the degradation of biochemically persistent OM is stimulated by the provision of bioavailable OM to the degrading microbial community. Whilst this is well established in terrestrial systems, whether it occurs in aquatic ecosystems remains subject to debate. We hypothesised that OM from zooplankton carcasses can stimulate the degradation of biochemically persistent leaf material, and that this effect is influenced by the daphnia:leaf OM ratio and the complexity of the degrading microbial community. Fresh Daphnia magna carcasses and 13C-labelled maize leaves (Zea mays) were incubated at different ratios (1:1, 1:3 and 1:5) alongside either a complex microbial community (<50 µm) or solely bacteria (<0.8 µm). 13C stable-isotope measurements of CO2 analyses were combined with phospholipid fatty acids (PLFA) analysis and DNA sequencing to link metabolic activities, biomass and taxonomic composition of the microbial community. Our experiments indicated a significantly higher respiration of leaf-derived C when daphnia-derived OM was most abundant (i.e. daphnia:leaf OM ratio of 1:1). This process was stronger in a complex microbial community, including eukaryotic microorganisms, than a solely bacterial community. We concluded that non-additive interactive effects were a function of increased C-N chemodiversity and microbial complexity, with the highest net respiration to be expected when chemodiversity is high and the degrading community complex. This study indicates that identifying the interactions and processes of OM degradation is one important key for a deeper understanding of aquatic and thus global carbon cycle.


Asunto(s)
Ecosistema , Zooplancton , Animales , Carbono , Ciclo del Carbono , Daphnia , Material Particulado
10.
Environ Microbiol ; 21(6): 1942-1956, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30251319

RESUMEN

Cylindrospermopsis (Raphidiopsis) raciborskii is an invasive, filamentous, nitrogen-fixing cyanobacterium that forms frequent blooms in freshwater habitats. While viruses play key roles in regulating the abundance, production and diversity of their hosts in aquatic ecosystems, the role(s) of viruses in the ecology of C. raciborskii is almost unexplored. Progress in this field has been hindered by the absence of a characterized virus-host system in C. raciborskii. To bridge this gap, we sequenced the genome of CrV-01T, a previously isolated cyanosiphovirus, and its host, C. raciborskii strain Cr2010. Analyses suggest that CrV-01T represents a distinct clade of siphoviruses infecting, and perhaps lysogenizing, filamentous cyanobacteria. Its genome contains unique features that include an intact CRISPR array and a 12 kb inverted duplication. Evidence suggests CrV-01T recently gained the ability to infect Cr2010 and recently lost the ability to form lysogens. The cyanobacterial host contains a CRISPR-Cas system with CRISPR spacers matching protospacers within the inverted duplication of the CrV-01T genome. Examination of metagenomes demonstrates that viruses with high genetic identity to CrV-01T, but lacking the inverted duplication, are present in C. raciborskii blooms in Australia. The unique genomic features of the CrV/Cr2010 system offers opportunities to investigate in more detail virus-host interactions in an ecologically important bloom-forming cyanobacterium.


Asunto(s)
Cianobacterias/virología , Especificidad del Huésped , Virus/aislamiento & purificación , Australia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cianobacterias/fisiología , Ecosistema , Agua Dulce/microbiología , Agua Dulce/virología , Genoma Viral , Genómica , Nitrógeno , Fenómenos Fisiológicos de los Virus , Virus/genética
11.
Environ Microbiol ; 21(2): 702-715, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30589201

RESUMEN

Shark Bay, Western Australia is a World Heritage area with extensive microbial mats and stromatolites. Microbial communities that comprise these mats have developed a range of mitigation strategies against changing levels of photosynthetically active and ultraviolet radiation, including the ability to biosynthesise the UV-absorbing natural products scytonemin and mycosporine-like amino acids (MAAs). To this end, the distribution of photoprotective pigments within Shark Bay microbial mats was delineated in the present study. This involved amplicon sequencing of bacterial 16S rDNA from communities at the surface and subsurface in three distinct mat types (smooth, pustular and tufted), and correlating this data with the chemical and molecular distribution of scytonemin and MAAs. Employing UV spectroscopy and MS/MS fragmentation, mycosporine-glycine, asterina and an unknown MAA were identified based on typical fragmentation patterns. Marker genes for scytonemin and MAA production (scyC and mysC) were amplified from microbial mat DNA and placed into phylogenetic context against a broad screen throughout 363 cyanobacterial genomes. Results indicate that occurrence of UV screening compounds is associated with the upper layer of Shark Bay microbial mats, and the occurrence of scytonemin is closely dependent on the abundance of cyanobacteria.


Asunto(s)
Aminoácidos/metabolismo , Bahías/microbiología , Cianobacterias/aislamiento & purificación , Indoles/metabolismo , Fenoles/metabolismo , Filogenia , Australia , Biología Computacional , Cianobacterias/clasificación , Cianobacterias/genética , Cianobacterias/metabolismo , Glicina/metabolismo , Microbiota/efectos de la radiación , Fotosíntesis , Espectrometría de Masas en Tándem , Rayos Ultravioleta
12.
Front Microbiol ; 9: 777, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755429

RESUMEN

Within meso/eutrophic freshwater ecosystems the dominance of cyanobacterial blooms during summer months has substantial impacts on ecosystem function with the production of toxins and subsequent induction of hypoxia altering food web structures and biogeochemical cycles. Cyanobacterial aggregates are extensively colonized by heterotrophic bacteria that provide the cyanobacteria with key nutrients and contribute towards remineralisation of organic matter. Here we sampled from five sites within a shallow eutrophic pond over a 6 months period, relating changes in the abundance of particle-associated heterotrophic taxa to phytoplankton abundance, toxin gene copies and physiochemical properties. The abundance of a majority of particle-associated bacteria were stable, in that they persisted despite perturbation. Cyanobacterial species abundance more likely correlated with stable rather than unstable bacteria and unstable bacteria were associated with allochthonous (terrestrial) organic matter. The occurrence of the most stable bacteria was correlated with large numbers of other bacteria suggesting bacteria-bacteria interactions have implications for the stable occurrence of microorganisms on particles. Freshwater ecosystems are frequently inundated with fresh nutrients in the form of surface runoff and experience an increasing number of high temperature days. In addition to increasing the severity and longevity of cyanobacterial blooms, run-off changes the nature of the particle-associated community compromising stability. This disruption has the potential to drive changes in the carbon and nitrogen cycles and requires further attention.

13.
Harmful Algae ; 73: 157-166, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29602504

RESUMEN

Cyanobacteria form harmful algal blooms and are highly adapted to a range of habitats, in part due to their phenotype plasticity. This plasticity is partially the result of co-existence of multiple strains within a single population. The toxic cyanobacterium Cylindrospermopsis raciborskii has remarkable phenotypic plasticity, strain variation and environmental adaptation resulting in an expansion of its global range. To understand the genetic basis of the high level of plasticity within a C. raciborskii population, the genomes of nine co-occurring strains were compared. The strains differed in morphology, toxin cell quotas and physiology, despite being obtained from a single water sample. Comparative genomics showed that three coiled strains were 3.9 Mbp in size, with 3544 ±â€¯11 genes, while straight strains were 3.8 Mbp in size, with 3485 ±â€¯20 genes. The core proteome comprised 86% of the genome and consisted of 2891 orthologous groups (OGs), whereas the variable genome comprised ∼14% (847 OGs), and the strain specific genome only ∼1% (433 OGs).There was a high proportion of variable strain-specific genes for the very closely related strains, which may underpin strain differentiation. The variable genes were associated with environmental responses and adaptation, particularly phage defence, DNA repair, membrane transport, and stress, illustrative of the adaptability of the strains in response to environmental and biological stressors. This study shows that high genomic variability exists between co-occurring strains and may be the basis of strain phenotypic differences and plasticity of populations. Therefore management and prediction of blooms of this harmful species requires different approaches to capture this strain variability.


Asunto(s)
Cianobacterias/genética , Variación Genética , Genoma Bacteriano , Bacteriófagos , Secuencia de Bases , Cianobacterias/inmunología , Cianobacterias/virología , ADN Bacteriano , Filogenia
14.
Chemosphere ; 202: 576-585, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29597175

RESUMEN

This study employed high-throughput sequencing (HTS) to understand the variations in microbial community in the largest estuary reservoir located at the Yangtze River for a year. Correlations between the heterotrophic bacterial and cyanobacterial communities in the estuarine ecosystem were also investigated. Significant spatial and temporal changes were observed in the microbial community composition at all sites. These differences were mainly reflected on the variations of bacterial relative abundance. The modularity analysis on the network indicate that bacterial community response to the variations of environmental factors in the form of co-occurrence/exclusion patterns. In warm season, Synechococcus spp. being the dominant Cyanobacteria taxa exhibited high relative abundance in the reservoir. Water temperature was the critical driver for the proliferation of Synechococcus. Moreover, heterotrophic bacteria belonging to Actinobacteria, Proteobacteria (α-, ß-, and γ-Proteobacteria), Bacteroidetes and Chlorobi, exhibited positive correlations with Synechococcus. The co-occurrence of these bacterial OTUs suggests that specific taxa may benefit from the proliferation of Synechococcus. In cold season, bacterial OTUs belonging to Actinobacteria and Bacteroidetes shown co-occurrence pattern with salt ions (including K+, Na+, Mg2+, Ca2+, Cl- and SO42-) inside the reservoir. In conclusion, further research is required to investigate the ecological functions of these taxa in estuarine ecosystems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Ecosistema , Estuarios , Estaciones del Año , Bacterias/clasificación , Bacterias/genética , Cianobacterias/genética , ADN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ríos/microbiología
15.
Genome Announc ; 5(40)2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28982984

RESUMEN

Two genome sequences of the phylum Armatimonadetes, derived from terrestrial environments, have been previously described. Here, two additional Armatimonadetes genome sequences were obtained via single-molecule real-time (SMRT) sequencing of an enrichment culture of the bloom-forming cyanobacterium Microcystis sp. isolated from a eutrophic lake (Brandenburg, Germany). The genomes are most closely affiliated with the class Fimbriimonadales, although they are smaller than the 5.6-Mbp type strain genome.

16.
Toxicon ; 138: 68-77, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28797629

RESUMEN

The cyanobacterium Dolichospermum circinale (formerly Anabaena circinalis) is responsible for neurotoxic saxitoxin-producing blooms in Australia. Previous studies have reported distinct isolates of toxic D. circinale producing different saxitoxin analogues at varying amounts, but the mechanisms responsible remain poorly understood. To assess the characteristics that may be responsible for this variance, a morphological, molecular and chemical survey of 28 Anabaena isolates was conducted. Morphological characteristics, presence or absence of saxitoxin biosynthetic genes and toxin amount and profile were assessed. The 28 isolates were collected from 16 locations. A correlation between the size of the isolates and its reported toxicity or geographical location could not be found. Molecular screening for the presence of several sxt genes revealed eight out of the 28 strains harboured the sxt gene cluster and all tailoring genes except sxtX. Furthermore, the presence of PSTs was correlated with the presence of the sxt cluster using quantitative pre-column oxidation high performance liquid chromatography with fluorescence detection (HPLC-FLD) and LC-MS/MS. Interestingly, isolates differed in the amount and type of toxins produced, with the eight toxic strains containing the core and tailoring biosynthetic genes while non-toxic strains were devoid of these genes. Moreover, the presence of sxt tailoring genes in toxic strains correlated with the biosynthesis of analogues. A greater understanding of toxin profile/quantity from distinct sites around Australia will aid the management of these at-risk areas and provide information on the molecular control or physiological characteristics responsible for toxin production.


Asunto(s)
Cianobacterias/genética , Saxitoxina/genética , Australia , Cianobacterias/clasificación , Cianobacterias/citología , ADN Bacteriano , Toxinas Marinas/biosíntesis , Toxinas Marinas/genética , Familia de Multigenes , ARN Ribosómico 16S , Saxitoxina/análogos & derivados , Saxitoxina/biosíntesis , Análisis de Secuencia de ADN , Intoxicación por Mariscos
17.
ACS Chem Biol ; 12(8): 2021-2029, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28570054

RESUMEN

Microcystins are globally the most commonly occurring freshwater cyanotoxins, causing acute poisoning and chronically inducing hepatocellular carcinoma. However, the detection and toxicological study of microcystins is hampered by the limited availability and high cost of pure toxin standards. Biosynthesis of microcystin variants in a fast-growing heterologous host offers a promising method of achieving reliable and economically viable alternative to isolating toxin from slow-growing cyanobacterial cultures. Here, we report the heterologous expression of recombinant microcystin synthetases in Escherichia coli to produce [d-Asp3]microcystin-LR and microcystin-LR. We assembled a 55 kb hybrid polyketide synthase/nonribosomal peptide synthetase gene cluster from Microcystis aeruginosa PCC 7806 using Red/ET recombineering and replaced the native promoters with an inducible PtetO promoter to yield microcystin titers superior to M. aeruginosa. The expression platform described herein can be tailored to heterologously produce a wide variety of microcystin variants, and potentially other cyanobacterial natural products of commercial relevance.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Toxinas Bacterianas/genética , Cianobacterias/genética , Escherichia coli/genética , Microbiología Industrial/métodos , Toxinas Marinas/biosíntesis , Toxinas Marinas/genética , Microcistinas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cianobacterias/enzimología , Toxinas de Cianobacterias , Toxinas Marinas/metabolismo , Microcistinas/biosíntesis , Microcistinas/genética , Microcistinas/metabolismo , Familia de Multigenes/genética , Péptido Sintasas/genética , Regiones Promotoras Genéticas/genética
18.
J Anim Ecol ; 85(6): 1636-1646, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27426226

RESUMEN

The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems.


Asunto(s)
Ecosistema , Mamíferos/fisiología , Microbiología del Suelo , Animales , Nueva Gales del Sur , Conejos/fisiología , Suelo/química
19.
Toxicon ; 119: 307-10, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27390039

RESUMEN

Cylindrospermopsis raciborskii is a bloom forming cyanobacterium with complex population dynamics and toxicity. In January of 2013 a single sample was collected from surface waters in Lake Wivenhoe, Australia, and twenty-four individual trichomes were isolated. Each isolate exhibited differences in growth rate, toxin cell quota and morphology, in the absence of phylogenetic heterogeneity. This study demonstrates substantial intraspecific isolate variation within a small sample and this has implications for understanding the population dynamics of this species.


Asunto(s)
Toxinas Bacterianas/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo
20.
ISME J ; 10(6): 1337-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26636552

RESUMEN

The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012-2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biodiversidad , Cianobacterias/crecimiento & desarrollo , Consorcios Microbianos , Plancton/clasificación , Australia , Bacterias/clasificación , Bacterias/genética , Cambio Climático , Cianobacterias/clasificación , Cianobacterias/genética , Eutrofización , Agua Dulce/microbiología , Lagos/microbiología , Plancton/genética , Plancton/crecimiento & desarrollo , Estaciones del Año , Especificidad de la Especie , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA