RESUMEN
Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.
RESUMEN
In efforts towards eliminating malaria, a discovery program was initiated to identify a novel antimalarial using KAF156 as a starting point. Following the most recent TCP/TPP guidelines, we have identified mCMQ069 with a predicted single oral dose for treatment (â¼40-106 mg) and one-month chemoprevention (â¼96-216 mg). We have improved unbound MPC and predicted human clearance by 18-fold and 10-fold respectively when compared to KAF156.
RESUMEN
There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (â¼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Diferenciación Celular , Revelación , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Antivirales/farmacologíaRESUMEN
Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Peptidil-Dipeptidasa A/metabolismoRESUMEN
Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and thus spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E-protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model, and thus provide a novel avenue for therapy.
RESUMEN
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.
Asunto(s)
Adenilil Ciclasas/metabolismo , Colesterol/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Animales , Proteínas Bacterianas/metabolismo , Ratones Endogámicos BALB C , Transducción de Señal/fisiología , Activación Transcripcional/fisiologíaRESUMEN
Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit trophoblast cell invasion, have been implicated in the pathogenesis of early-onset PE. However, a role of kisspeptin signaling during the genesis of this syndrome has not been elucidated. Herein, we used the preeclamptic-like BPH/5 mouse model to investigate kisspeptin expression and potential upstream regulatory mechanisms in a PE-like syndrome. Expression of the kisspeptin encoding gene, Kiss1, and the 10-amino-acid kisspeptide (Kp-10), are upregulated in the non-pregnant uterus of BPH/5 females during diestrus and in the maternal-fetal interface during embryonic implantation and decidualization. Correspondingly, the dysregulation of molecular pathways downstream to kisspeptins also occurs in this mouse model. BPH/5 females have abnormal sex steroid hormone profiles during early gestation. In this study, the normalization of circulating concentrations of 17ß-estradiol (E2) and progesterone (P4) in pregnant BPH/5 females not only mitigated Kiss1 upregulation, but also rescued the expression of multiple molecules downstream to kisspeptin and ameliorated adverse fetoplacental outcomes. Those findings suggest that uterine Kiss1 upregulation occurs pre-pregnancy and persists during early gestation in a PE-like mouse model. Moreover, this study highlights the role of sex steroid hormones in uteroplacental Kiss1 dysregulation and the improvement of placentation by normalization of E2, P4 and Kiss1.
RESUMEN
Infection with Cryptosporidium spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a phase 2a clinical trial in HIV-infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine's lack of efficacy in the phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using Emax and logistic models, which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the phase 2a study participants were well below concentrations associated with anti-Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed. (This study has been registered in ClinicalTrials.gov under identifier NCT03341767.).
Asunto(s)
Antiprotozoarios , Criptosporidiosis , Cryptosporidium , Adulto , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Niño , Clofazimina/farmacología , Clofazimina/uso terapéutico , Criptosporidiosis/tratamiento farmacológico , Diarrea/tratamiento farmacológico , HumanosRESUMEN
Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).
Asunto(s)
Anticuerpos Biespecíficos , Neoplasias de la Próstata Resistentes a la Castración , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Complejo CD3/uso terapéutico , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Humanos , Ligandos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Linfocitos TRESUMEN
The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.
Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Pandemias , SARS-CoV-2 , Animales , COVID-19/prevención & control , COVID-19/virología , Línea Celular , Citidina/administración & dosificación , Citidina/análogos & derivados , Citidina/farmacología , Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Hidroxilaminas/administración & dosificación , Hidroxilaminas/farmacología , Mesocricetus , Nelfinavir/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacosRESUMEN
Stimulator of interferon genes (STING) links innate immunity to biological processes ranging from antitumor immunity to microbiome homeostasis. Mechanistic understanding of the anticancer potential for STING receptor activation is currently limited by metabolic instability of the natural cyclic dinucleotide (CDN) ligands. From a pathway-targeted cell-based screen, we identified a non-nucleotide, small-molecule STING agonist, termed SR-717, that demonstrates broad interspecies and interallelic specificity. A 1.8-angstrom cocrystal structure revealed that SR-717 functions as a direct cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) mimetic that induces the same "closed" conformation of STING. SR-717 displayed antitumor activity; promoted the activation of CD8+ T, natural killer, and dendritic cells in relevant tissues; and facilitated antigen cross-priming. SR-717 also induced the expression of clinically relevant targets, including programmed cell death 1 ligand 1 (PD-L1), in a STING-dependent manner.
Asunto(s)
Antineoplásicos/farmacología , Materiales Biomiméticos/farmacología , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/farmacología , Animales , Antígeno B7-H1/metabolismo , Materiales Biomiméticos/química , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Cristalografía por Rayos X , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratones , Nucleótidos Cíclicos/química , Conformación Proteica/efectos de los fármacosRESUMEN
Oxyntomodulin (OXM) is an intestinal peptide hormone that activates both glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptors. The natural peptide reduces body weight in obese subjects and exhibits direct acute glucoregulatory effects in patients with type II diabetes. However, the clinical utility of OXM is limited due to its lower in vitro potency and short in vivo half-life. To overcome these issues, we developed stapled, long-acting, and highly potent OXM analogs with balanced activities at both GLP-1 and GCG receptors. The lead molecule O14 exhibits potent and long-lasting effects on glucose control, body weight loss, and reduction of hepatic fat reduction in DIO mice. Importantly, O14 significantly reversed hepatic steatosis; reduced liver weight, total cholesterol, and hepatic triglycerides; and improved markers of liver function in a nonalcoholic steatohepatitis (NASH) mouse model. A symmetrical version of the peptide was also shown to be more efficacious and long-lasting in controlling glucose than semaglutide and the clinical candidate cotadutide in wild-type mice, highlighting the utility of our designs of the dual agonist as a potential new therapy for diabetes and liver diseases.
Asunto(s)
Peso Corporal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Oxintomodulina/farmacología , Oxintomodulina/farmacocinética , Animales , Glucemia/metabolismo , Colesterol/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Oxintomodulina/uso terapéutico , Triglicéridos/metabolismoRESUMEN
The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.
Asunto(s)
Antibacterianos/uso terapéutico , Filariasis/tratamiento farmacológico , Oncocercosis/tratamiento farmacológico , Quinazolinas/uso terapéutico , Wolbachia/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Brugia pahangi/efectos de los fármacos , Femenino , Filariasis/microbiología , Filarioidea/efectos de los fármacos , Gerbillinae/microbiología , Gerbillinae/parasitología , Microfilarias/efectos de los fármacos , Quinazolinas/administración & dosificación , Simbiosis/efectos de los fármacosRESUMEN
Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.
Asunto(s)
Antibacterianos/uso terapéutico , Descubrimiento de Drogas , Filariasis/tratamiento farmacológico , Filariasis/parasitología , Filarioidea/fisiología , Quinazolinas/uso terapéutico , Animales , Antibacterianos/química , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Femenino , Filarioidea/efectos de los fármacos , Filarioidea/microbiología , Ensayos Analíticos de Alto Rendimiento , Ratones , Fenotipo , Quinazolinas/química , Quinazolinas/farmacología , Bibliotecas de Moléculas Pequeñas , Wolbachia/efectos de los fármacosRESUMEN
Chimeric antigen receptor (CAR) T cells with a long-lived memory phenotype are correlated with durable, complete remissions in patients with leukemia. However, not all CAR T cell products form robust memory populations, and those that do can induce chronic B cell aplasia in patients. To address these challenges, we previously developed a switchable CAR (sCAR) T cell system that allows fully tunable, on/off control over engineered cellular activity. To further evaluate the platform, we generated and assessed different murine sCAR constructs to determine the factors that afford efficacy, persistence, and expansion of sCAR T cells in a competent immune system. We find that sCAR T cells undergo significant in vivo expansion, which is correlated with potent antitumor efficacy. Most importantly, we show that the switch dosing regimen not only allows control over B cell populations through iterative depletion and repopulation, but that the "rest" period between dosing cycles is the key for induction of memory and expansion of sCAR T cells. These findings introduce rest as a paradigm in enhancing memory and improving the efficacy and persistence of engineered T cell products.
Asunto(s)
Bioingeniería/métodos , Inmunoterapia Adoptiva/métodos , Animales , Antígenos CD19/inmunología , Linfocitos B/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica/inmunología , Femenino , Región de Cambio de la Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/inmunología , Activación de Linfocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Modelos Biológicos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunologíaRESUMEN
The chemical diversity and known safety profiles of drugs previously tested in humans make them a valuable set of compounds to explore potential therapeutic utility in indications outside those originally targeted, especially neglected tropical diseases. This practice of "drug repurposing" has become commonplace in academic and other nonprofit drug-discovery efforts, with the appeal that significantly less time and resources are required to advance a candidate into the clinic. Here, we report a comprehensive open-access, drug repositioning screening set of 12,000 compounds (termed ReFRAME; Repurposing, Focused Rescue, and Accelerated Medchem) that was assembled by combining three widely used commercial drug competitive intelligence databases (Clarivate Integrity, GVK Excelra GoStar, and Citeline Pharmaprojects), together with extensive patent mining of small molecules that have been dosed in humans. To date, 12,000 compounds (â¼80% of compounds identified from data mining) have been purchased or synthesized and subsequently plated for screening. To exemplify its utility, this collection was screened against Cryptosporidium spp., a major cause of childhood diarrhea in the developing world, and two active compounds previously tested in humans for other therapeutic indications were identified. Both compounds, VB-201 and a structurally related analog of ASP-7962, were subsequently shown to be efficacious in animal models of Cryptosporidium infection at clinically relevant doses, based on available human doses. In addition, an open-access data portal (https://reframedb.org) has been developed to share ReFRAME screen hits to encourage additional follow-up and maximize the impact of the ReFRAME screening collection.
Asunto(s)
Antiprotozoarios/farmacología , Criptosporidiosis/tratamiento farmacológico , Cryptosporidium/efectos de los fármacos , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Criptosporidiosis/parasitología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BLRESUMEN
The treatment of patients with acute myeloid leukemia (AML) with targeted immunotherapy is challenged by the heterogeneity of the disease and a lack of tumor-exclusive antigens. Conventional immunotherapy targets for AML such as CD33 and CD123 have been proposed as targets for chimeric antigen receptor (CAR)-engineered T-cells (CAR-T-cells), a therapy that has been highly successful in the treatment of B-cell leukemia and lymphoma. However, CD33 and CD123 are present on hematopoietic stem cells, and targeting with CAR-T-cells has the potential to elicit long-term myelosuppression. C-type lectin-like molecule-1 (CLL1 or CLEC12A) is a myeloid lineage antigen that is expressed by malignant cells in more than 90% of AML patients. CLL1 is not expressed by healthy Hematopoietic Stem Cells (HSCs), and is therefore a promising target for CAR-T-cell therapy. Here, we describe the development and optimization of an anti-CLL1 CAR-T-cell with potent activity on both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Furthermore, in a disseminated mouse xenograft model using the CLL1-positive HL60 cell line, these CAR-T-cells completely eradicated tumor, thus supporting CLL1 as a promising target for CAR-T-cells to treat AML while limiting myelosuppressive toxicity.
Asunto(s)
Lectinas Tipo C/antagonistas & inhibidores , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Mitogénicos/antagonistas & inhibidores , Proteínas Recombinantes de Fusión , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Lectinas Tipo C/inmunología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Mitogénicos/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is the result of the ectopic accumulation of lipids in hepatic cells and is the early stage of liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma. While some mechanisms of aberrant lipid storage are understood, unbiased phenotypic drug screening holds the potential to identify new therapeutic small molecule mechanisms that reverse lipid accumulation in hepatic cells and prevent disease progression. Immortalized hepatocyte cell lines are often used as in vitro models of hepatocyte function, including in the study of lipid accumulation. However, mechanisms and therapeutic agents studied in these systems suffer from poor translation to primary cells and animal models of disease. Herein, we report an ex vivo high-throughput screening platform using primary mouse hepatocytes with a physiologically relevant lipid-laden phenotype isolated from mice that are administered a choline-methionine deficient diet. This screening platform using primary diseased hepatocytes may help to overcome a major hurdle in liver disease drug discovery and could lead to the development of new therapeutics for hepatosteatosis.
Asunto(s)
Descubrimiento de Drogas/métodos , Hepatocitos/química , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Animales , Bioensayo , Dieta , Evaluación Preclínica de Medicamentos , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamenteRESUMEN
Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.