RESUMEN
BACKGROUND: With the significant shift in the classification, risk stratification, and standards of care for gliomas, we sought to understand how the overall survival of patients with these tumors is impacted by molecular features, clinical metrics, and treatment received. METHODS: We assembled a cohort of patients with a histopathologically diagnosed glioma from The Cancer Genome Atlas, Project Genomics Evidence Neoplasia Information Exchange, and Dana-Farber Cancer Institute/Brigham and Women's Hospital. This incorporated retrospective clinical, histological, and molecular data alongside prospective assessment of patient survival. RESULTS: 4,400 gliomas were identified: 2,195 glioblastoma, 1,198 IDH1/2-mutant astrocytoma, 531 oligodendroglioma, 271 other IDH1/2-wildtype glioma, and 205 pediatric-type glioma. Molecular classification updated 27.2% of gliomas from their original histopathologic diagnosis. Examining the distribution of molecular alterations across glioma subtypes revealed mutually exclusive alterations within tumorigenic pathways. Non-TCGA patients had significantly improved overall survival compared to TCGA patients, with 26.7%, 55.6%, and 127.8% longer survival for glioblastoma, IDH1/2-mutant astrocytoma, and oligodendroglioma respectively (all p<0.01). Several prognostic features were characterized, including NF1 alteration and 21q loss in glioblastoma, and EGFR amplification and 22q loss in IDH1/2-mutant astrocytoma. Leveraging the size of this cohort, nomograms were generated to assess the probability of overall survival based on patient age, the molecular features of a tumor, and the treatment received. CONCLUSIONS: By applying modern molecular criteria, we characterize the genomic diversity across glioma subtypes, identify clinically applicable prognostic features, and provide a contemporary update on patient survival to serve as a reference for ongoing investigations.
RESUMEN
Genome editing tools, particularly the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems (e.g., CRISPR/Cas9), and their repurposing into epigenetic editing platforms, offer enormous potential as safe and customizable therapies for cancer. Specifically, various transcriptional abnormalities in human malignancies, such as silencing of tumor suppressors and ectopic re-expression of oncogenes, have been successfully targeted with virtually no off-target effects using CRISPR activation and repression systems. In these systems, the nuclease-deactivated Cas9 protein (dCas9) is fused to one or more domains inducing selective activation or repression of the targeted genes. Despite these advances, the efficient in vivo delivery of these molecules into the target cancer cells represents a critical barrier to accomplishing translation into a clinical therapy setting for cancer. Major obstacles include the large size of dCas9 fusion proteins, the necessity of multimodal delivery of protein and gRNAs, and the potential of these formulations to elicit detrimental immune responses.In this context, viral methods for delivering CRISPR face several limitations, such as the packaging capacity of the viral genome, the potential for integration of the nucleic acids into the host cells genome, and immunogenicity of viral proteins, posing serious safety concerns. The rapid development of mRNA vaccines in response to the COVID-19 pandemic has rekindled interest in mRNA-based approaches for CRISPR/dCas9 delivery. Simultaneously, due to their high loading capacity, scalability, customizable surface modification for cell targeting, and low immunogenicity, lipid nanoparticles (LNPs) have been widely explored as nonviral vectors. In this chapter, we first describe the design of optimized dCas9-effector mRNAs and gRNAs for epigenetic editing. We outline formulations of LNPs suitable for dCas9 mRNA delivery. Additionally, we provide a protocol for the co-encapsulation of the dCas9-effector mRNAs and gRNA into these LNPs, along with detailed methods for delivering these formulations to both cell lines (in vitro) and mouse models of breast cancer (in vivo).
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nanopartículas , Neoplasias , Edición Génica/métodos , Humanos , Nanopartículas/química , Animales , Neoplasias/genética , Neoplasias/terapia , Epigénesis Genética , Ratones , ARN Guía de Sistemas CRISPR-Cas/genética , Liposomas/química , Línea Celular Tumoral , Lípidos/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Terapia Genética/métodos , Técnicas de Transferencia de GenRESUMEN
PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Convulsiones/genética , Mutación , ADN Helicasas/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genéticaRESUMEN
Epithelial-mesenchymal transition (EMT) is a reversible transcriptional program invoked by cancer cells to drive cancer progression. Transcription factor ZEB1 is a master regulator of EMT, driving disease recurrence in poor-outcome triple negative breast cancers (TNBCs). Here, this work silences ZEB1 in TNBC models by CRISPR/dCas9-mediated epigenetic editing, resulting in highly-specific and nearly complete suppression of ZEB1 in vivo, accompanied by long-lasting tumor inhibition. Integrated "omic" changes promoted by dCas9 linked to the KRAB domain (dCas9-KRAB) enabled the discovery of a ZEB1-dependent-signature of 26 genes differentially-expressed and -methylated, including the reactivation and enhanced chromatin accessibility in cell adhesion loci, outlining epigenetic reprogramming toward a more epithelial state. In the ZEB1 locus transcriptional silencing is associated with induction of locally-spread heterochromatin, significant changes in DNA methylation at specific CpGs, gain of H3K9me3, and a near complete erasure of H3K4me3 in the ZEB1 promoter. Epigenetic shifts induced by ZEB1-silencing are enriched in a subset of human breast tumors, illuminating a clinically-relevant hybrid-like state. Thus, the synthetic epi-silencing of ZEB1 induces stable "lock-in" epigenetic reprogramming of mesenchymal tumors associated with a distinct and stable epigenetic landscape. This work outlines epigenome-engineering approaches for reversing EMT and customizable precision molecular oncology approaches for targeting poor outcome breast cancers.
Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Recurrencia Local de Neoplasia/genética , Factores de Transcripción/genética , Epigénesis Genética/genéticaRESUMEN
BACKGROUND: Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS: Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS: By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Metilación de ADN , Epigénesis Genética , Genes Supresores de Tumor , Línea Celular Tumoral , Regulación Neoplásica de la Expresión GénicaRESUMEN
High hyperdiploid acute lymphoblastic leukemia (HeH ALL), one of the most common childhood malignancies, is driven by nonrandom aneuploidy (abnormal chromosome numbers) mainly comprising chromosomal gains. In this study, we investigate how aneuploidy in HeH ALL arises. Single cell whole genome sequencing of 2847 cells from nine primary cases and one normal bone marrow reveals that HeH ALL generally display low chromosomal heterogeneity, indicating that they are not characterized by chromosomal instability and showing that aneuploidy-driven malignancies are not necessarily chromosomally heterogeneous. Furthermore, most chromosomal gains are present in all leukemic cells, suggesting that they arose early during leukemogenesis. Copy number data from 577 primary cases reveals selective pressures that were used for in silico modeling of aneuploidy development. This shows that the aneuploidy in HeH ALL likely arises by an initial tripolar mitosis in a diploid cell followed by clonal evolution, in line with a punctuated evolution model.
Asunto(s)
Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Aberraciones Cromosómicas , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Diploidia , Inestabilidad CromosómicaRESUMEN
BRAF mutations are a significant driver of disease in pediatric low-grade glioma, but the implications of BRAF alterations on the clinical course and treatment response in adult glioma remain unclear. Here, we characterize a multi-institutional cohort of more than 300 patients (>200 adults) with BRAF-mutated glioma using clinical, pathological/molecular, and outcome data. We observed that adult and pediatric BRAF-mutant gliomas harbor distinct clinical and molecular features, with a higher prevalence of BRAFV600E (Class I) and BRAF fusions in pediatric tumors. BRAFV600E alterations were associated with improved survival in adults with glioma overall, though not in glioblastoma. Other genomic alterations observed within functional classes were consistent with the putative roles of those BRAF mutation classes in glioma pathogenesis. In our adult cohort, BRAFV600E alterations conferred sensitivity to targeted therapies. Overall, this large cohort of BRAF-altered adult gliomas demonstrates a broad range of molecular alterations with implications for treatment sensitivity and survival.
RESUMEN
The coronavirus disease 2019 (COVID-19) pandemic has created a global health crisis, with disproportionate effects on vulnerable sociodemographic groups. Although the pandemic is showing potential to increase suicide ideation (SI), we know little about which sociodemographic characteristics or COVID-19 experiences are associated with SI. Our United States-based sample (n = 837 adults [mean age = 37.1 years]) completed an online survey during August-September 2020. The study utilized an online convenience sample from a prior study, which was enriched for exposure to trauma and experiences of posttraumatic stress symptoms. We assessed SI using the Beck Depression Inventory-II. Traditional (i.e., logistic regression) and machine learning (i.e., LASSO, random forest) methods evaluated associations of 148 self-reported COVID-19 factors and sociodemographic characteristics with current SI. 234 participants (28.0%) reported SI. Twenty items were significantly associated with SI from logistic regression. Of these 20 items, LASSO identified seven sociodemographic characteristics (younger age, lower income, single relationship status, sexual orientation other than heterosexual as well as specifically identifying as bisexual, non-full-time employment, and living in a town) and six COVID-19 factors (not engaging in protective COVID-19 behaviors, receiving mental health treatment (medication and/or psychotherapy) due to the COVID-19 pandemic, socializing during the pandemic, losing one's job due to COVID-19, having a friend with COVID-19, and having an acquaintance with COVID-19) associated with SI. Random forest findings were largely consistent with LASSO. These findings may inform multidisciplinary research and intervention work focused on understanding and preventing adverse mental health outcomes such as SI during and in the aftermath of the pandemic.
Asunto(s)
COVID-19 , Pandemias , Femenino , Humanos , Masculino , Adulto , COVID-19/epidemiología , Estudios Transversales , Ideación Suicida , Proyectos de InvestigaciónRESUMEN
OBJECTIVE: Psychiatric disorders increase risk for contracting coronavirus disease 2019 (COVID-19), but we know little about relationships between psychiatric symptoms and COVID-19 risky and protective behaviors. Posttraumatic stress disorder (PTSD) has been associated with increased propensity to engage in risky behaviors, but may also be associated with increased COVID-19 protective behaviors due to increased threat sensitivity and social isolation. METHOD: We examined associations of PTSD symptoms with COVID-19-related protective and risky behaviors using data from a cross-sectional online United States study among 845 US adults in August through September 2020. PTSD symptoms (PTSD Checklist-5), sociodemographics, COVID-19-related experiences and vulnerabilities, and past 30-day engagement in 10 protective and eight risky behaviors for COVID-19 were assessed via self-report. We examined associations between PTSD symptoms and COVID-19 protective and risky behaviors with linear regressions, adjusting for covariates. RESULTS: Probable PTSD and higher PTSD symptom severity were associated with greater engagement in protective behaviors, but also greater engagement in risky behaviors. Associations were only slightly attenuated by adjustment for COVID-19 exposures and perceived likelihood and severity of COVID-19. Associations varied by PTSD clusters: intrusions and arousal were associated with both more protective and more risky behaviors, whereas negative cognitions or mood was associated only with more risky, and avoidance only with more protective, behaviors. CONCLUSION: Higher PTSD symptoms were associated with engagement in more protective but also more risky behaviors for COVID-19. Mental health should be considered in the design of public health campaigns dedicated to limiting infectious disease spread. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Asunto(s)
COVID-19 , Trastornos por Estrés Postraumático , Adulto , COVID-19/prevención & control , Estudios Transversales , Humanos , Asunción de Riesgos , SARS-CoV-2 , Trastornos por Estrés Postraumático/psicología , Estados Unidos/epidemiologíaRESUMEN
Individual behaviors are critical for preventing the spread of coronavirus disease 2019 (COVID-19) infection. Given that both protective and risky behaviors influence risk of infection, it is critical that we understand how such behaviors cluster together and in whom. Using a data-driven approach, we identified clusters of COVID-19-related protective and risky behaviors and examined associations with socio-demographic, pandemic, and mental health factors. Data came from a cross-sectional online U.S. nationwide study of 832 adults with high levels of pre-pandemic trauma. Latent class analysis was performed with ten protective (e.g., washing hands, wearing masks) and eight risky (e.g., attending indoor restaurants, taking a flight) behaviors for COVID-19. Then, we examined distributions of socio-demographic and pandemic factors across behavior classes using ANOVA or Chi-square tests, and associations between mental health factors (depressive, anxiety, posttraumatic stress symptoms) and behavior classes using multinomial logistic regression. We identified four classes, including three classes with relatively low risky but high (28.8%), moderate (33.5%) and minimal (25.5%) protective behaviors and one high risky behaviors class with associated moderate protective behaviors (12.1%). Age, sexual orientation, political preference, and most pandemic factors differed significantly across behavior classes. Anxiety and posttraumatic stress symptoms, but not depression, were higher in the High Risk, but also Highly and Moderately Protective classes, relative to Minimally Protective. Prevention and intervention efforts should examine constellations of protective and risky behaviors to comprehensively understand risk, and consider current anxiety and posttraumatic stress symptoms as potential risk indicators.
RESUMEN
BACKGROUND: Meningiomas are the most common primary intracranial tumor in adults. Clinical care is currently guided by the World Health Organization (WHO) grade assigned to meningiomas, a 3-tiered grading system based on histopathology features, as well as extent of surgical resection. Clinical behavior, however, often fails to conform to the WHO grade. Additional prognostic information is needed to optimize patient management. METHODS: We evaluated whether chromosomal copy-number data improved prediction of time-to-recurrence for patients with meningioma who were treated with surgery, relative to the WHO schema. The models were developed using Cox proportional hazards, random survival forest, and gradient boosting in a discovery cohort of 527 meningioma patients and validated in 2 independent cohorts of 172 meningioma patients characterized by orthogonal genomic platforms. RESULTS: We developed a 3-tiered grading scheme (Integrated Grades 1-3), which incorporated mitotic count and loss of chromosome 1p, 3p, 4, 6, 10, 14q, 18, 19, or CDKN2A. 32% of meningiomas reclassified to either a lower-risk or higher-risk Integrated Grade compared to their assigned WHO grade. The Integrated Grade more accurately identified meningioma patients at risk for recurrence, relative to the WHO grade, as determined by time-dependent area under the curve, average precision, and the Brier score. CONCLUSION: We propose a molecularly integrated grading scheme for meningiomas that significantly improves upon the current WHO grading system in prediction of progression-free survival. This framework can be broadly adopted by clinicians with relative ease using widely available genomic technologies and presents an advance in the care of meningioma patients.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Adulto , Estudios de Cohortes , Humanos , Neoplasias Meníngeas/patología , Meningioma/patología , Clasificación del Tumor , Recurrencia Local de Neoplasia/genética , Pronóstico , Estudios Retrospectivos , Organización Mundial de la SaludRESUMEN
Gliosarcoma is an aggressive brain tumor with histologic features of glioblastoma (GBM) and soft tissue sarcoma. Despite its poor prognosis, its rarity has precluded analysis of its underlying biology. We used a multi-center database to characterize the genomic landscape of gliosarcoma. Sequencing data was obtained from 35 gliosarcoma patients from Genomics Evidence Neoplasia Information Exchange (GENIE) 5.0, a database curated by the American Association of Cancer Research (AACR). We analyzed genomic alterations in gliosarcomas and compared them to GBM (n = 1,449) and soft tissue sarcoma (n = 1,042). 30 samples were included (37% female, median age 59 [IQR: 49-64]). Nineteen common genes were identified in gliosarcoma, defined as those altered in > 5% of samples, including TERT Promoter (92%), PTEN (66%), and TP53 (60%). Of the 19 common genes in gliosarcoma, 6 were also common in both GBM and soft tissue sarcoma, 4 in GBM alone, 0 in soft tissue sarcoma alone, and 9 were more distinct to gliosarcoma. Of these, BRAF harbored an OncoKB level 1 designation, indicating its status as a predictive biomarker of response to an FDA-approved drug in certain cancers. EGFR, CDKN2A, NF1, and PTEN harbored level 4 designations in solid tumors, indicating biological evidence of these biomarkers predicting a drug-response. Gliosarcoma contains molecular features that overlap GBM and soft tissue sarcoma, as well as its own distinct genomic signatures. This may play a role in disease classification and inclusion criteria for clinical trials. Gliosarcoma mutations with potential therapeutic indications include BRAF, EGFR, CDKN2A, NF1, and PTEN.
Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Gliosarcoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Bases de Datos Factuales , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Perfilación de la Expresión Génica , Glioblastoma/diagnóstico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Gliosarcoma/diagnóstico , Gliosarcoma/tratamiento farmacológico , Gliosarcoma/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.
Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Everolimus/farmacología , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Imidazoles/farmacología , Proteínas del Tejido Nervioso/metabolismo , Oncogenes/genética , Unión Proteica , Quinolinas/farmacología , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.
Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Glioma/genética , Histonas/genética , Interneuronas/metabolismo , Mutación/genética , Células-Madre Neurales/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Linaje de la Célula , Reprogramación Celular/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glioma/patología , Histonas/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Clasificación del Tumor , Oligodendroglía/metabolismo , Regiones Promotoras Genéticas/genética , Prosencéfalo/embriología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transcripción Genética , Transcriptoma/genéticaRESUMEN
Despite decades of study, the molecular mechanisms and selectivity of the biomolecular components of honeybee (Apis mellifera) venom as anticancer agents remain largely unknown. Here, we demonstrate that honeybee venom and its major component melittin potently induce cell death, particularly in the aggressive triple-negative and HER2-enriched breast cancer subtypes. Honeybee venom and melittin suppress the activation of EGFR and HER2 by interfering with the phosphorylation of these receptors in the plasma membrane of breast carcinoma cells. Mutational studies reveal that a positively charged C-terminal melittin sequence mediates plasma membrane interaction and anticancer activity. Engineering of an RGD motif further enhances targeting of melittin to malignant cells with minimal toxicity to normal cells. Lastly, administration of melittin enhances the effect of docetaxel in suppressing breast tumor growth in an allograft model. Our work unveils a molecular mechanism underpinning the anticancer selectivity of melittin, and outlines treatment strategies to target aggressive breast cancers.
RESUMEN
Mutations in the FMS-like tyrosine kinase 3 (FLT3) gene in 13q12.2 are among the most common driver events in acute leukemia, leading to increased cell proliferation and survival through activation of the phosphatidylinositol 3-kinase/AKT-, RAS/MAPK-, and STAT5-signaling pathways. In this study, we examine the pathogenetic impact of somatic hemizygous 13q12.2 microdeletions in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) using 5 different patient cohorts (in total including 1418 cases). The 13q12.2 deletions occur immediately 5' of FLT3 and involve the PAN3 locus. By detailed analysis of the 13q12.2 segment, we show that the deletions lead to loss of a topologically associating domain border and an enhancer of FLT3. This results in increased cis interactions between the FLT3 promoter and another enhancer located distally to the deletion breakpoints, with subsequent allele-specific upregulation of FLT3 expression, expected to lead to ligand-independent activation of the receptor and downstream signaling. The 13q12.2 deletions are highly enriched in the high-hyperdiploid BCP ALL subtype (frequency 3.9% vs 0.5% in other BCP ALL) and in cases that subsequently relapsed. Taken together, our study describes a novel mechanism of FLT3 involvement in leukemogenesis by upregulation via chromatin remodeling and enhancer hijacking. These data further emphasize the role of FLT3 as a driver gene in BCP ALL.
Asunto(s)
Trastornos de los Cromosomas/genética , Elementos de Facilitación Genéticos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tirosina Quinasa 3 Similar a fms/genética , Línea Celular , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Deleción Cromosómica , Trastornos de los Cromosomas/complicaciones , Cromosomas Humanos Par 13/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Regulación Leucémica de la Expresión Génica , Humanos , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple , RNA-Seq , Regulación hacia Arriba/genética , Secuenciación Completa del GenomaRESUMEN
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
RESUMEN
Hyperdiploidy, i.e. gain of whole chromosomes, is one of the most common genetic features of childhood acute lymphoblastic leukemia (ALL), but its pathogenetic impact is poorly understood. Here, we report a proteogenomic analysis on matched datasets from genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of >8,000 genes and proteins as well as Hi-C of primary patient samples from hyperdiploid and ETV6/RUNX1-positive pediatric ALL. We show that CTCF and cohesin, which are master regulators of chromatin architecture, display low expression in hyperdiploid ALL. In line with this, a general genome-wide dysregulation of gene expression in relation to topologically associating domain (TAD) borders were seen in the hyperdiploid group. Furthermore, Hi-C of a limited number of hyperdiploid childhood ALL cases revealed that 2/4 cases displayed a clear loss of TAD boundary strength and 3/4 showed reduced insulation at TAD borders, with putative leukemogenic effects.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcripción Genética , Adolescente , Aneuploidia , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Niño , Preescolar , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Aberraciones Cromosómicas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Masculino , Proteogenómica/métodos , Proteoma/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Análisis de Secuencia de ARN , Cohesinas , Proteína ETS de Variante de Translocación 6RESUMEN
Anaplastic thyroid cancer (ATC) is a rare and extremely malignant tumor with no available cure. The genetic landscape of this malignancy has not yet been fully explored. In this study, we performed whole exome sequencing and the RNA-sequencing of fourteen cases of ATC to delineate copy number changes, fusion gene events, and somatic mutations. A high frequency of genomic amplifications was seen, including 29% of cases having amplification of CCNE1 and 9% of CDK6; these events may be targetable by cyclin dependent kinase (CDK) inhibition. Furthermore, 9% harbored amplification of TWIST1, which is also a potentially targetable lesion. A total of 21 fusion genes in five cases were seen, none of which were recurrent. Frequent mutations included TP53 (55%), the TERT promoter (36%), and ATM (27%). Analyses of mutational signatures showed an involvement of processes that are associated with normal aging, defective DNA mismatch repair, activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) activity, failure of DNA double-strand break repair, and tobacco exposure. Taken together, our results shed new light on the tumorigenesis of ATC and show that a relatively large proportion (36%) of ATCs harbor genetic events that make them candidates for novel therapeutic approaches. When considering that ATC today has a mortality rate of close to 100%, this is highly relevant from a clinical perspective.