Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Metabolites ; 13(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984760

RESUMEN

Escherichia coli and Staphylococcus aureus are globally among the most prominent bacterial strains associated with antibacterial resistance-caused deaths. Naturally occurring polyphenols, such as hydrolyzable tannins, have been shown to potently inhibit E. coli and S. aureus. The current study investigated the metabolome changes of E. coli and S. aureus cultures after treatments with different hydrolyzable tannins using an NMR metabolomics approach. Additionally, the effect of these tannin treatments influencing a more complex bacterial system was studied in a biomimetic setting with fecal samples inoculated into the growth medium. Metabolite concentration changes were observed in all three scenarios: E. coli, S. aureus, and fecal batch culture. The metabolome of E. coli was more altered by the tannin treatments than S. aureus when compared to control cultures. A dimeric hydrolyzable tannin, rugosin D, was found to be the most effective of the studied compounds in influencing bacterial metabolome changes and in inhibiting E. coli and S. aureus growth. It was also observed that the tannin structure should have both hydrophobic and hydrophilic regions to efficiently influence E. coli and S. aureus growth.

2.
Arch Microbiol ; 203(4): 1555-1563, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33399894

RESUMEN

Two different types of condensed tannins (CTs), which were extracted and purified from tilia (Tilia L.) and black locust (Robinia pseudoacacia), were studied and tested against two kinds of bacteria, including Gram-negative and Gram-positive, avian pathogenic E. coli (APEC) and Staphylococcus epidermidis (S. epidermidis) respectively, by minimal bactericidal concentrations (MBCs) and scanning electron microscopy (SEM). Both CT extracts were significantly effective (p ≤ 0.05) at MBCs of 5-10 mg CT/ml against APEC (Gram-negative), and at 1.25-5 mg CT/ml on S. epidermidis (Gram-positive). This indicated that the CTs were more potent against the Gram-positive than the Gram-negative bacteria. Further, SEM revealed that CTs caused mainly morphological deformations of the bacterial cells and some conjoined cell growth.


Asunto(s)
Escherichia coli , Microscopía Electrónica de Rastreo , Extractos Vegetales , Proantocianidinas , Robinia , Staphylococcus epidermidis , Tilia , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Proantocianidinas/aislamiento & purificación , Proantocianidinas/farmacología , Robinia/química , Staphylococcus epidermidis/efectos de los fármacos , Tilia/química
3.
Molecules ; 25(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824081

RESUMEN

In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e., Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. All tested compounds showed antimicrobial effects against S. aureus, and almost all against E. coli and C. perfringens. For L. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest for S. aureus and the weakest for C. perfringens. For S. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results with S. aureus showed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. For E. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. For C. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought.


Asunto(s)
Antibacterianos/farmacología , Clostridiales/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Taninos Hidrolizables/farmacología , Lactobacillus plantarum/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Clostridiales/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Lactobacillus plantarum/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
4.
Pol J Microbiol ; 69: 1-5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32067440

RESUMEN

In vitro studies aimed at studying the mechanism of action of carvacrol and oregano as natural anti-bacterial agents to control multiple antibiotic-resistant avian pathogenic Escherichia coli (APEC) strain O23:H52 isolated from chicken were performed. Derivatives with increased minimum inhibitory concentrations (MIC) to the phytochemicals were selected after growing Escherichia coli (E. coli) strain O23:H52 at sub-lethal concentrations of carvacrol and oregano for a period of 60 days. Whole-genome sequencing (WGS) of two derivatives revealed a missense mutation in cadC and marR: the genes responsible for survival mechanisms and antibiotic resistance by efflux, respectively.In vitro studies aimed at studying the mechanism of action of carvacrol and oregano as natural anti-bacterial agents to control multiple antibiotic-resistant avian pathogenic Escherichia coli (APEC) strain O23:H52 isolated from chicken were performed. Derivatives with increased minimum inhibitory concentrations (MIC) to the phytochemicals were selected after growing Escherichia coli (E. coli) strain O23:H52 at sub-lethal concentrations of carvacrol and oregano for a period of 60 days. Whole-genome sequencing (WGS) of two derivatives revealed a missense mutation in cadC and marR: the genes responsible for survival mechanisms and antibiotic resistance by efflux, respectively.


Asunto(s)
Antibacterianos/farmacología , Cimenos/farmacología , Escherichia coli/efectos de los fármacos , Origanum/química , Fitoquímicos/farmacología , Animales , Pollos/microbiología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Mutación Missense , Aceites Volátiles/farmacología , Proteínas Represoras/genética , Transactivadores/genética , Secuenciación Completa del Genoma
5.
BMC Microbiol ; 19(1): 294, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842755

RESUMEN

BACKGROUND: Thymol is a phenolic compound used for its wide spectrum antimicrobial activity. There is a limited understanding of the antimicrobial mechanisms underlying thymol activity. To investigate this, E. coli strain JM109 was exposed to thymol at sub-lethal concentrations and after 16 rounds of exposure, isolates with a 2-fold increased minimal inhibitory concentration (MIC) were recovered (JM109-Thyr). The phenotype was stable after multiple sub-cultures without thymol. RESULTS: Cell morphology studies by scanning electron microscopy (SEM) suggest that thymol renders bacterial cell membranes permeable and disrupts cellular integrity. 1H Nuclear magnetic resonance (NMR) data showed an increase in lactate and the lactic acid family amino acids in the wild type and JM109-Thyr in the presence of thymol, indicating a shift from aerobic respiration to fermentation. Sequencing of JM109-Thyr defined multiple mutations including a stop mutation in the acrR gene resulting in a truncation of the repressor of the AcrAB efflux pump. AcrAB is a multiprotein complex traversing the cytoplasmic and outer membrane, and is involved in antibiotic clearance. CONCLUSIONS: Our data suggests that thymol tolerance in E. coli induces morphological, metabolic and genetic changes to adapt to thymol antimicrobial activity.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Timol/farmacología , Permeabilidad de la Membrana Celular , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentación , Regulación Bacteriana de la Expresión Génica , Lactatos/metabolismo , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Mutación , Fenotipo , Proteínas Represoras/genética
6.
J Med Microbiol ; 68(1): 111-114, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30475200

RESUMEN

In recent years, several plasmids harbouring genes encoding phosphoethanolamine transferases conferring colistin resistance have been described in multiple Enterobacteriaceae species. Avian Pathogenic E. coli (APEC) causes colibacillosis and is responsible for a considerable proportion of the disease burden in commercial poultry flocks, and may be linked to zoonotic infections in humans. Here, we describe the genotypic and phenotypic characteristics of a multidrug-resistant APEC ST69 isolate (APECA2), recovered in 2016 from a diseased broiler at post-mortem examination in Germany. The isolate was resistant to several antibiotics of human and veterinary importance, including colistin. The mcr-1 gene was detected on a mobile genetic element located on an IncHI2/ST4 plasmid, which was characterized using long-read Nanopore and short-read Illumina sequencing of purified plasmid. Isolate APECA2 displayed resistance to chicken serum and harbours numerous virulence genes. This study highlights the public health importance of enhanced antimicrobial resistance surveillance and strict antimicrobial stewardship in human and veterinary healthcare.


Asunto(s)
Antibacterianos/farmacología , Pollos/microbiología , Colistina/farmacología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/aislamiento & purificación , Enfermedades de las Aves de Corral/microbiología , Animales , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Genotipo , Alemania , Plásmidos/genética , Virulencia/genética
7.
Proc Natl Acad Sci U S A ; 115(5): 1039-1044, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339503

RESUMEN

The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.


Asunto(s)
Butirofilinas/inmunología , Butirofilinas/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Secuencias de Aminoácidos , Animales , Antígenos CD/química , Antígenos CD/inmunología , Antígenos CD/metabolismo , Butirofilinas/química , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Activación de Linfocitos , Ratones , Multimerización de Proteína
8.
mBio ; 8(4)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720731

RESUMEN

The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase blaCTX-M1 We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies.IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections. Transfer of antimicrobial resistance via plasmid exchange is of particular concern as it enables unrelated bacteria to acquire resistance. The gastrointestinal tract is replete with bacteria and provides an environment for plasmid transfer between commensals and pathogens. Here we use the chicken gut microbiota as an exemplar to model the effects of bacterial infection, antibiotic administration, and plasmid transfer. We show that transfer of a multidrug-resistant plasmid from the zoonotic pathogen Salmonella to commensal Escherichia coli occurs at a high rate, even in the absence of antibiotic administration. Our work demonstrates that the in vitro gut model provides a powerful screening tool that can be used to assess and refine interventions that mitigate the spread of antibiotic resistance in the gut before undertaking animal studies.


Asunto(s)
Ciego/microbiología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Transferencia de Gen Horizontal , Modelos Teóricos , Plásmidos , Salmonella/genética , Animales , Antibacterianos/farmacología , Cefotaxima/farmacología , Pollos , Escherichia coli/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Salmonella/efectos de los fármacos
9.
Vet Microbiol ; 199: 100-107, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28110775

RESUMEN

Salmonella Enteritidis remains a significant issue within the poultry industry and one potential solution is to use probiotic bacteria to prevent Salmonella colonisation through competitive exclusion (CE). We demonstrate that combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN33 were effective competitive excluders of Salmonella Enteritidis S1400 in poultry. Two models were developed to evaluate the efficacy of probiotic where birds received Salmonella Enteritidis S1400 by a) oral gavage and b) sentinel bird to bird transmission. A statistically significant (p<0.001) 2 log reduction of Salmonella Enteritidis S1400 colonisation was observed in the ileum, caecum and colon at day 43 using combined administration of the two probiotic bacteria. However, no Salmonella Enteritidis S1400 colonisation reduction was observed when either probiotic was administered individually. In the sentinel bird model the combined probiotic administered at days 12 and 20 was more effective than one-off or double administrations at age 1 and 12days. In vitro cell free culture supernatant studies suggest the mechanism of Salmonella Enteritidis S1400 inhibition was due to a reduction in pH by the probiotic bacteria. Our current study provides further evidence that probiotics can significantly reduce pathogenic bacterial colonisation in poultry and that mixed preparation of probiotics provide superior performance when compared to individual bacterial preparations.


Asunto(s)
Crianza de Animales Domésticos/métodos , Enterococcus faecium/fisiología , Ligilactobacillus salivarius/fisiología , Interacciones Microbianas , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enteritidis/fisiología , Animales , Células CACO-2 , Pollos , Femenino , Células Hep G2 , Humanos , Masculino , Modelos Biológicos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Probióticos/administración & dosificación , Salmonelosis Animal/microbiología , Salmonelosis Animal/prevención & control , Factores de Tiempo
10.
AIMS Microbiol ; 3(4): 885-898, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31294195

RESUMEN

Campylobacter jejuni is the major cause of bacterial gastroenteritis in man, while it is generally regarded as a commensal of the avian gut. Consumption and handling of contaminated poultry meat products are major risk factors for human infection. The body temperature in man (37 °C) and chickens (42 °C) differ markedly, and differential gene regulation and protein expression at different temperatures may in part explain the behaviour in the two hosts. We performed proteomics analyses with C. jejuni cells grown at 37 °C and 42 °C. Time-of-flight mass spectrometry (Q-Tof) analysis was carried out after samples were digested with the Filter-Aided Sample Preparation (FASP) method and peptides were fractionated by strong anion exchanges. Differentially regulated proteins were identified by Mascot and Scaffold analyses. Triple quadrupole (QQQ) mass spectrometer analysis confirmed that a total of 33 proteins were differentially regulated between 37 °C and 42 °C. Several upregulated proteins were selected for their corresponding gene knock-out mutants to be tested for their virulence in the Galleria mellonella model. To correlate with other tissue/animal models, the GADH mutant was selected for its reduced ability to colonize chickens. At 37 °C, the mutants of outer membrane protein Omp50 and Chaperone GroEL significantly increased virulence; while at 42 °C, the mutants of YceI, Omp50, and GADH reduced virulence against Galleria mellonella compared with the wild type strains. The results of current and previous studies indicate that GADH is a virulent factor in G. mellonella and a colonization factor in chickens. The workflow of this study may prove a new way to identify stress related virulent factors. The implications of these findings are discussed for pathogenesis in the model and other hosts.

11.
BMC Genomics ; 17(1): 960, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27875980

RESUMEN

BACKGROUND: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. However, the diversity between isolates remains poorly understood. Here, a total of 272 APEC isolates collected from the United Kingdom (UK), Italy and Germany were characterised using multiplex polymerase chain reactions (PCRs) targeting 22 equally weighted factors covering virulence genes, R-type and phylogroup. Following these analysis, 95 of the selected strains were further analysed using Whole Genome Sequencing (WGS). RESULTS: The most prevalent phylogroups were B2 (47%) and A1 (22%), although there were national differences with Germany presenting group B2 (35.3%), Italy presenting group A1 (53.3%) and UK presenting group B2 (56.1%) as the most prevalent. R-type R1 was the most frequent type (55%) among APEC, but multiple R-types were also frequent (26.8%). Following compilation of all the PCR data which covered a total of 15 virulence genes, it was possible to build a similarity tree using each PCR result unweighted to produce 9 distinct groups. The average number of virulence genes was 6-8 per isolate, but no positive association was found between phylogroup and number or type of virulence genes. A total of 95 isolates representing each of these 9 groupings were genome sequenced and analysed for in silico serotype, Multilocus Sequence Typing (MLST), and antimicrobial resistance (AMR). The UK isolates showed the greatest variability in terms of serotype and MLST compared with German and Italian isolates, whereas the lowest prevalence of AMR was found for German isolates. Similarity trees were compiled using sequencing data and notably single nucleotide polymorphism data generated ten distinct geno-groups. The frequency of geno-groups across Europe comprised 26.3% belonging to Group 8 representing serogroups O2, O4, O18 and MLST types ST95, ST140, ST141, ST428, ST1618 and others, 18.9% belonging to Group 1 (serogroups O78 and MLST types ST23, ST2230), 15.8% belonging to Group 10 (serogroups O8, O45, O91, O125ab and variable MLST types), 14.7% belonging to Group 7 (serogroups O4, O24, O35, O53, O161 and MLST type ST117) and 13.7% belonging to Group 9 (serogroups O1, O16, O181 and others and MLST types ST10, ST48 and others). The other groups (2, 3, 4, 5 and 6) each contained relatively few strains. However, for some of the genogroups (e.g. groups 6 and 7) partial overlap with SNPs grouping and PCR grouping (matching PCR groups 8 (13 isolates on 22) and 1 (14 isolates on 16) were observable). However, it was not possible to obtain a clear correlation between genogroups and unweighted PCR groupings. This may be due to the genome plasticity of E. coli that enables strains to carry the same virulence factors even if the overall genotype is substantially different. CONCLUSIONS: The conclusion to be drawn from the lack of correlations is that firstly, APEC are very diverse and secondly, it is not possible to rely on any one or more basic molecular or phenotypic tests to define APEC with clarity, reaffirming the need for whole genome analysis approaches which we describe here. This study highlights the presence of previously unreported serotypes and MLSTs for APEC in Europe. Moreover, it is a first step on a cautious reconsideration of the merits of classical identification criteria such as R typing, phylogrouping and serotyping.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli/genética , Genoma Bacteriano , Genómica , Enfermedades de las Aves de Corral/microbiología , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Minería de Datos , Farmacorresistencia Bacteriana , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Serotipificación , Factores de Virulencia/genética
12.
Sci Rep ; 6: 25858, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27162150

RESUMEN

The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.


Asunto(s)
Bradyrhizobium/aislamiento & purificación , Genoma Bacteriano , Análisis de Secuencia de ADN/métodos , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Europa (Continente) , Tamaño del Genoma , Anotación de Secuencia Molecular , Fijación del Nitrógeno , Filogenia , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Microbiología del Suelo
13.
J Med Microbiol ; 65(7): 611-618, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27166141

RESUMEN

Using a sequence-based approach we previously identified an IncI1 CTX-M-1 plasmid, pIFM3791, on a single pig farm in the UK that was harboured by Klebsiella pneumoniae, Escherichia coli and Salmonella enterica serotype 4,5,12:i:-. To test the hypothesis that the plasmid had spread rapidly into these differing host bacteria we wished to assess whether the plasmid conferred a fitness advantage. To do this an IncI1 curing vector was constructed and used to displace the IncI1 CTX-M-1 plasmids from K. pneumoniae strain B3791 and several other unrelated IncI1-harbouring strains indicating the potential wider application of the curing vector. The IncI1 CTX-M-1 plasmid was reintroduced by conjugation into the cured K. pneumoniae strain and also a naturally IncI1 plasmid free S. enterica serotype 4,5,12:i:-, S348/11. Original, cured and complemented strains were tested for metabolic competence using Biolog technology and in competitive growth, association to mammalian cells and biofilm formation experiments. The plasmid-cured K. pneumoniae strain grew more rapidly than either the original plasmid-carrying strain or plasmid-complemented strains in competition experiments. Additionally, the plasmid-cured strain was significantly better at respiring with l-sorbose as a carbon source and putrescine, γ-amino-n-butyric acid, l-alanine and l-proline as nitrogen sources. By contrast, no differences in phenotype were found when comparing plasmid-harbouring and plasmid-free S. enterica S348/11. In conclusion, the IncI1 curing vector successfully displaced multiple IncI plasmids. The IncI1 CTX-M1 plasmid conferred a growth disadvantage upon K. pneumoniae, possibly by imposing a metabolic burden, the mechanism of which remains to be determined.


Asunto(s)
Metabolismo Energético , Genética Microbiana/métodos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/genética , Biología Molecular/métodos , Plásmidos , beta-Lactamasas/biosíntesis , Klebsiella pneumoniae/metabolismo , Redes y Vías Metabólicas
14.
J Biol Chem ; 291(17): 9310-21, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26917727

RESUMEN

Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection.


Asunto(s)
Epidermis/inmunología , Células Epiteliales/inmunología , Inmunoglobulinas/química , Inmunoglobulinas/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Línea Celular , Humanos , Ratones , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
15.
BMC Microbiol ; 16: 15, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26846255

RESUMEN

BACKGROUND: The Salmonella enterica serovar Derby is frequently isolated from pigs and turkeys whereas serovar Mbandaka is frequently isolated from cattle, chickens and animal feed in the UK. Through comparative genomics, phenomics and mutant construction we previously suggested possible mechanistic reasons why these serovars demonstrate apparently distinct host ranges. Here, we investigate the genetic and phenotypic diversity of these two serovars in the UK. We produce a phylogenetic reconstruction and perform several biochemical assays on isolates of S. Derby and S. Mbandaka acquired from sites across the UK between the years 2000 and 2010. RESULTS: We show that UK isolates of S. Mbandaka comprise of one clonal lineage which is adapted to proficient utilisation of metabolites found in soya beans under ambient conditions. We also show that this clonal lineage forms a biofilm at 25 °C, suggesting that this serovar maybe well adapted to survival ex vivo, growing in animal feed. Conversely, we show that S. Derby is made of two distinct lineages, L1 and L2. These lineages differ genotypically and phenotypically, being divided by the presence and absence of SPI-23 and the ability to more proficiently invade porcine jejunum derived cell line IPEC-J2. CONCLUSION: The results of this study lend support to the hypothesis that the differences in host ranges of S. Derby and S. Mbandaka are adaptations to pathogenesis, environmental persistence, as well as utilisation of metabolites abundant in their respective host environments.


Asunto(s)
Especificidad del Huésped , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella enterica/aislamiento & purificación , Salmonella enterica/fisiología , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Humanos , Fenotipo , Filogenia , Enfermedades de las Aves de Corral/microbiología , Salmonella enterica/clasificación , Salmonella enterica/genética , Serogrupo , Porcinos , Enfermedades de los Porcinos/microbiología , Pavos , Reino Unido
16.
J Antimicrob Chemother ; 71(5): 1178-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26803720

RESUMEN

OBJECTIVES: This study aimed to compare ESBL-producing Escherichia coli causing infections in humans with infecting or commensal isolates from animals and isolates from food of animal origin in terms of the strain types, the ESBL gene present and the plasmids that carry the respective ESBL genes. METHODS: A collection of 353 ESBL-positive E. coli isolates from the UK, the Netherlands and Germany were studied by MLST and ESBL genes were identified. Characterization of ESBL gene-carrying plasmids was performed using PCR-based replicon typing. Moreover, IncI1-Iγ and IncN plasmids were characterized by plasmid MLST. RESULTS: The ESBL-producing E. coli represented 158 different STs with ST131, ST10 and ST88 being the most common. Overall, blaCTX-M-1 was the most frequently detected ESBL gene, followed by blaCTX-M-15, which was the most common ESBL gene in the human isolates. The most common plasmid replicon type overall was IncI1-Iγ followed by multiple IncF replicons. CONCLUSIONS: ESBL genes were present in a wide variety of E. coli STs. IncI1-Iγ plasmids that carried the blaCTX-M-1 gene were widely disseminated amongst STs in isolates from animals and humans, whereas other plasmids and STs appeared to be more restricted to isolates from specific hosts.


Asunto(s)
Toxinas Bacterianas/genética , Enterotoxinas/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Microbiología de Alimentos , Plásmidos/análisis , beta-Lactamasas/genética , Animales , Escherichia coli/clasificación , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Alemania , Humanos , Tipificación de Secuencias Multilocus , Países Bajos , Reacción en Cadena de la Polimerasa , Reino Unido
17.
Microb Ecol Health Dis ; 26: 28853, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26679774

RESUMEN

Avian intestinal spirochaetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally, the ileum, caeca, and colon), which can cause symptoms such as diarrhoea, reduced growth rate, and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summarises the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.

18.
Res Vet Sci ; 103: 87-95, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26679801

RESUMEN

Avian intestinal spirochaetosis (AIS) caused by Brachyspira spp., and notably Brachyspira pilosicoli, is common in layer flocks and reportedly of increasing incidence in broilers and broiler breeders. Disease manifests as diarrhoea, increased feed consumption, reduced growth rates and occasional mortality in broilers and these signs are shown in layers also associated with a delayed onset of lay, reduced egg weights, faecal staining of eggshells and non-productive ovaries. Treatment with Denagard® Tiamulin has been used to protect against B. pilosicoli colonisation, persistence and clinical presentation of AIS in commercial layers, but to date there has been no definitive study validating efficacy. Here, we used a poultry model of B. pilosicoli infection of layers to compare the impact of three doses of Denagard® Tiamulin. Four groups of thirty 17 week old commercial pre-lay birds were all challenged with B. pilosicoli strain B2904 with three oral doses two days apart. All birds were colonised within 2 days after the final oral challenge and mild onset of clinical signs were observed thereafter. A fifth group that was unchallenged and untreated was also included for comparison as healthy birds. Five days after the final oral Brachypira challenge three groups were given Denagard® Tiamulin in drinking water made up following the manufacturer's recommendations with doses verified as 58.7 ppm, 113 ppm and 225 ppm. Weight gain body condition and the level of diarrhoea of birds infected with B. pilosicoli were improved and shedding of the organism reduced significantly (p=0.001) following treatment with Denagard® Tiamulin irrespective of dose given. The level and duration of colonisation of organs of birds infected with B. pilosicoli was also reduced. Confirming previous findings we showed that the ileum, caeca, colon, and both liver and spleen were colonised and here we demonstrated that treatment with Denagard® Tiamulin resulted in significant reduction in the numbers of Brachyspira found in each of these sites and dramatic reduction in faecal shedding (p<0.001) to approaching zero as assessed by culture of cloacal swabs. Although the number of eggs produced per bird and the level of eggshell staining appeared unaffected, egg weights of treated birds were greater than those of untreated birds for a period of approximately two weeks following treatment. These data conclusively demonstrate the effectiveness of Denagard® Tiamulin in reducing B. pilosicoli infection in laying hens.


Asunto(s)
Antibacterianos/administración & dosificación , Brachyspira/efectos de los fármacos , Pollos , Agua Potable/análisis , Infecciones por Bacterias Gramnegativas/veterinaria , Enfermedades de las Aves de Corral/tratamiento farmacológico , Animales , Diterpenos/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedades de las Aves de Corral/microbiología
19.
PLoS One ; 10(3): e0120450, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798944

RESUMEN

Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.


Asunto(s)
Metaboloma , Oxígeno/metabolismo , Salmonella enterica/metabolismo , Serogrupo , Calor , Salmonella enterica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...