Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7999): 574-582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086421

RESUMEN

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Asunto(s)
Astrocitos , Neuroprotección , Adenilil Ciclasas/metabolismo , Astrocitos/citología , Astrocitos/enzimología , Astrocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Glaucoma/patología , Glaucoma/terapia
2.
Antioxid Redox Signal ; 39(16-18): 1039-1052, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37276181

RESUMEN

Significance: Retinal neurons are vulnerable to disease and injury, which can result in neuronal death and degeneration leading to irreversible vision loss. The human retina does not regenerate to replace neurons lost to disease or injury. However, cells within the retina of other animals are capable of regenerating neurons, and homologous cells within the mammalian retina could potentially be prompted to do the same. Activating evolutionarily silenced intrinsic regenerative capacity of the mammalian retina could slow, or even reverse, vision loss, leading to an improved quality of life for millions of people. Recent Advances: During development, neurons in the retina are generated progressively by retinal progenitor cells, with distinct neuron types born over developmental time. Many genes function in this process to specify the identity of newly generated neuron types, and these appropriate states of gene expression inform recent regenerative work. When regeneration is initiated in other vertebrates, including birds and fish, specific signaling pathways control the efficiency of regeneration, and these conserved pathways are likely to be important in mammals as well. Critical Issues: Using insights from development and from other animals, limited regeneration from intrinsic cell types has been demonstrated in the mammalian retina, but it is able only to generate a subset of partially differentiated retinal neuron types. Future Directions: Future studies should aim at increasing the efficiency of regeneration, activating regeneration in a targeted fashion across the retina, and improving the ability to generate specific types of retinal neurons to replace those lost to disease or injury. Antioxid. Redox Signal. 39, 1039-1052.


Asunto(s)
Calidad de Vida , Retina , Animales , Humanos , Neuronas , Regeneración/fisiología , Mamíferos
3.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824714

RESUMEN

Genetic mosaic analysis, in which mutant cells reside intermingled with wild-type cells, is a powerful experimental approach, but has not been widely used in mice because existing genome-based strategies require complicated and protracted breeding schemes. We have developed an alternative approach termed BEAM (for Binary Expression Aleatory Mosaic) that relies on sparse recombinase activation to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Following delivery of DNA constructs by transfection or viral transduction, combinatorial recombinase activity generates two distinct populations of cells labeled with either green or red fluorescent protein. Any gene of interest can be mis-expressed or deleted in one population for comparison with intermingled control cells. We have extensively optimized and characterized this system both in vitro and in vivo , and demonstrate its power for investigating cell autonomy, identifying temporally or spatially aberrant phenotypes, revealing changes in cell proliferation or death, and controlling for procedural variability.

4.
Proc Natl Acad Sci U S A ; 117(46): 29113-29122, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139574

RESUMEN

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians' increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Mamíferos/genética , MicroARNs/genética , MicroARNs/fisiología , Animales , Cuerpo Calloso/fisiología , Euterios/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Corteza Motora/patología , Neuronas Motoras , Tractos Piramidales/patología
5.
Science ; 359(6375): 555-559, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217584

RESUMEN

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/genética , Tasa de Mutación , Enfermedades Neurodegenerativas/genética , Neurogénesis/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Síndrome de Cockayne/genética , Análisis Mutacional de ADN , Femenino , Hipocampo/citología , Hipocampo/embriología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neuronas , Corteza Prefrontal/citología , Corteza Prefrontal/embriología , Análisis de la Célula Individual , Secuenciación Completa del Genoma , Xerodermia Pigmentosa/genética , Adulto Joven
6.
Cell Rep ; 21(13): 3754-3766, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281825

RESUMEN

Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Transducción de Señal , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Telencéfalo/patología , Animales , Linaje de la Célula , Fosfatidilinositol 3-Quinasa Clase I/genética , Hemimegalencefalia/genética , Hemimegalencefalia/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología
7.
Nat Rev Genet ; 18(4): 230-244, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28111472

RESUMEN

Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Biología Evolutiva/métodos , Técnicas Genéticas , Análisis de la Célula Individual/métodos , Animales , Humanos
8.
Blood ; 128(19): 2338-2342, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27707736

RESUMEN

BCL11A, a repressor of human fetal (γ-)globin expression, is required for immune and hematopoietic stem cell functions and brain development. Regulatory sequences within the gene, which are subject to genetic variation affecting fetal globin expression, display hallmarks of an erythroid enhancer in cell lines and transgenic mice. As such, this enhancer is a novel, attractive target for therapeutic gene editing. To explore the roles of such sequences in vivo, we generated mice in which the orthologous 10-kb intronic sequences were removed. Bcl11a enhancer-deleted mice, Bcl11a(Δenh), phenocopy the BCL11A-null state with respect to alterations of globin expression, yet are viable and exhibit no observable blood, brain, or other abnormalities. These preclinical findings provide strong in vivo support for genetic modification of the enhancer for therapy of hemoglobin disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Elementos de Facilitación Genéticos/genética , Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Animales , Secuencia de Bases , Compartimento Celular , Proteínas de Unión al ADN , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Silenciador del Gen , Humanos , Ratones , Ratones Transgénicos , Proteínas Represoras
9.
Cell Rep ; 15(5): 999-1012, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117402

RESUMEN

The molecular linkage between neocortical projection neuron subtype and area development, which enables the establishment of functional areas by projection neuron populations appropriate for specific sensory and motor functions, is poorly understood. Here, we report that Ctip1 controls precision of neocortical development by regulating subtype identity in deep-layer projection neurons. Ctip1 is expressed by postmitotic callosal and corticothalamic projection neurons but is excluded over embryonic development from corticospinal motor neurons, which instead express its close relative, Ctip2. Loss of Ctip1 function results in a striking bias in favor of subcerebral projection neuron development in sensory cortex at the expense of corticothalamic and deep-layer callosal development, while misexpression of Ctip1 in vivo represses subcerebral gene expression and projections. As we report in a paired paper, Ctip1 also controls acquisition of sensory area identity. Therefore, Ctip1 couples subtype and area specification, enabling specific functional areas to organize precise ratios of appropriate output projections.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/citología , Neuronas/citología , Neuronas/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Movimiento Celular , Femenino , Proteínas de Homeodominio/metabolismo , Integrasas/metabolismo , Ratones , Mitosis , Mutación/genética , Neurogénesis , Médula Espinal/citología , Tálamo/citología , Factores de Transcripción/metabolismo
10.
Neuron ; 90(2): 261-77, 2016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27100196

RESUMEN

While transcriptional controls over the size and relative position of cortical areas have been identified, less is known about regulators that direct acquisition of area-specific characteristics. Here, we report that the transcription factor Ctip1 functions in primary sensory areas to repress motor and activate sensory programs of gene expression, enabling establishment of sharp molecular boundaries defining functional areas. In Ctip1 mutants, abnormal gene expression leads to aberrantly motorized corticocortical and corticofugal output connectivity. Ctip1 critically regulates differentiation of layer IV neurons, and selective loss of Ctip1 in cortex deprives thalamocortical axons of their receptive "sensory field" in layer IV, which normally provides a tangentially and radially defined compartment of dedicated synaptic territory. Therefore, although thalamocortical axons invade appropriate cortical regions, they are unable to organize into properly configured sensory maps. Together, these data identify Ctip1 as a critical control over sensory area development.


Asunto(s)
Proteínas Portadoras/fisiología , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Proteínas Nucleares/fisiología , Tálamo/fisiología , Animales , Axones/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Mutación , Neocórtex/citología , Neuronas/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras , Transducción de Señal/fisiología , Tálamo/citología
11.
Science ; 350(6256): 94-98, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26430121

RESUMEN

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Mutación , Neuronas/citología , Neuronas/fisiología , Polimorfismo de Nucleótido Simple , Transcripción Genética , Adolescente , Linaje de la Célula , Análisis Mutacional de ADN , Replicación del ADN/genética , Femenino , Sitios Genéticos , Humanos , Masculino , Mitosis/genética , Análisis de la Célula Individual
12.
Neuron ; 84(6): 1240-57, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25521379

RESUMEN

Katanin is a microtubule-severing complex whose catalytic activities are well characterized, but whose in vivo functions are incompletely understood. Human mutations in KATNB1, which encodes the noncatalytic regulatory p80 subunit of katanin, cause severe microlissencephaly. Loss of Katnb1 in mice confirms essential roles in neurogenesis and cell survival, while loss of zebrafish katnb1 reveals specific roles for katnin p80 in early and late developmental stages. Surprisingly, Katnb1 null mutant mouse embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. KATNB1-deficient human cells show defective proliferation and spindle structure, while Katnb1 null fibroblasts also demonstrate a remarkable excess of centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal unexpected functions for KATNB1 in regulating overall centriole, mother centriole, and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Centriolos/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Cilios/fisiología , Adenosina Trifosfatasas/genética , Animales , Estudios de Casos y Controles , Proliferación Celular/genética , Proliferación Celular/fisiología , Centriolos/genética , Corteza Cerebral/anomalías , Corteza Cerebral/metabolismo , Cilios/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Katanina , Ratones , Microcefalia/genética , Mutación , Linaje , Empalme del ARN/genética , Población Blanca/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA