Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38464671

RESUMEN

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day-old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

2.
Circ Heart Fail ; 16(12): e010351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38113297

RESUMEN

BACKGROUND: PRDM16 plays a role in myocardial development through TGF-ß (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS: Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS: We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-ß-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-ß expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS: Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-ß signaling.


Asunto(s)
Cardiomiopatías , Proteínas de Unión al ADN , Insuficiencia Cardíaca , Transducción de Señal , Factor de Crecimiento Transformador beta , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/genética , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Humanos , Masculino , Femenino , Animales , Ratones , Técnicas de Sustitución del Gen , Recién Nacido , Preescolar , Proliferación Celular/genética , Apoptosis/genética , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/genética , Células Cultivadas
3.
Circ Arrhythm Electrophysiol ; 16(2): e010858, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706317

RESUMEN

BACKGROUND: Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak. METHODS: A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function. RESULTS: Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block. CONCLUSIONS: Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Calcio/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Nodo Sinoatrial , Intercambiador de Sodio-Calcio/metabolismo
4.
J Cell Mol Med ; 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110090

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50  = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.

5.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33497365

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.


Asunto(s)
Miocitos Cardíacos , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Empalme Alternativo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Isoformas de Proteínas/metabolismo , Expansión de Repetición de Trinucleótido
6.
Circulation ; 142(12): 1159-1172, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32683896

RESUMEN

BACKGROUND: Enhanced diastolic calcium (Ca2+) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca2+/calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. METHODS: Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca2+ leak in atrial cardiomyocytes was assessed using confocal Ca2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. RESULTS: Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca2+ spark frequency in atrial cardiomyocytes with Ca2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. CONCLUSIONS: Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.


Asunto(s)
Fibrilación Atrial/metabolismo , Señalización del Calcio , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Fibrilación Atrial/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
7.
Heart Rhythm ; 17(3): 503-511, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31622781

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is the most common type of arrhythmia. Abnormal atrial myocyte Ca2+ handling promotes aberrant membrane excitability and remodeling that are important for atrial arrhythmogenesis. The sequence of molecular events leading to loss of normal atrial myocyte Ca2+ homeostasis is not established. Late Na+ current (INa,L) is increased in atrial myocytes from AF patients together with an increase in activity of Ca2+/calmodulin-dependent kinase II (CaMKII). OBJECTIVE: The purpose of this study was to determine whether CaMKII-dependent phosphorylation at Ser571 on NaV1.5 increases atrial INa,L, leading to aberrant atrial Ca2+ cycling, altered electrophysiology, and increased AF risk. METHODS: Atrial myocyte electrophysiology, Ca2+ handling, and arrhythmia susceptibility were studied in wild-type and Scn5a knock-in mice expressing phosphomimetic (S571E) or phosphoresistant (S571A) NaV1.5 at Ser571. RESULTS: Atrial myocytes from S571E but not S571A mice displayed an increase in INa,L and action potential duration, and with adrenergic stress have increased delayed afterdepolarizations. Frequency of Ca2+ sparks and waves was increased in S571E atrial myocytes compared to wild type. S571E mice showed an increase in atrial events induced by adrenergic stress and AF inducibility in vivo. Isolated S571E atria were more susceptible to spontaneous atrial events, which were abrogated by inhibiting sarcoplasmic reticulum Ca2+ release, CaMKII, or the Na+/Ca2+ exchanger. Expression of phospho-NaV1.5 at Ser571 and autophosphorylated CaMKII were increased in atrial samples from human AF patients. CONCLUSION: This study identified CaMKII-dependent regulation of NaV1.5 as an important upstream event in Ca2+ handling defects and abnormal impulse generation in the setting of AF.


Asunto(s)
Fibrilación Atrial/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Animales , Fibrilación Atrial/patología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Miocitos Cardíacos/patología
8.
Expert Opin Ther Targets ; 24(1): 25-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869254

RESUMEN

Introduction: Type-2 ryanodine receptor (RyR2) located on the sarcoplasmic reticulum initiate systolic Ca2+ transients within cardiomyocytes. Proper functioning of RyR2 is therefore crucial to the timing and force generated by cardiomyocytes within a healthy heart. Improper intracellular Ca2+ handing secondary to RyR2 dysfunction is associated with a variety of cardiac pathologies including catecholaminergic polymorphic ventricular tachycardia (CPVT), atrial fibrillation (AF), and heart failure (HF). Thus, RyR2 and its associated accessory proteins provide promising drug targets to scientists developing therapeutics for a variety of cardiac pathologies.Areas covered: In this article, we review the role of RyR2 in a variety of cardiac pathologies. We performed a literature search utilizing PubMed and MEDLINE as well as reviewed registries of trials from clinicaltrials.gov from 2010 to 2019 for novel therapeutic approaches that address the cellular mechanisms underlying CPVT, AF, and HF by specifically targeting defective RyR2 channels.Expert opinion: The negative impact of cardiac dysfunction on human health and medical economics are major motivating factors for establishing new and effective therapeutic approaches. Focusing on directly impacting the molecular mechanisms underlying defective Ca2+ handling by RyR2 in HF and arrhythmia has great potential to be translated into novel and innovative therapies.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Desarrollo de Medicamentos , Insuficiencia Cardíaca/fisiopatología , Humanos , Terapia Molecular Dirigida , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/fisiopatología
9.
Circulation ; 140(8): 681-693, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31185731

RESUMEN

BACKGROUND: Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS: Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS: Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS: PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.


Asunto(s)
Fibrilación Atrial/metabolismo , Miocitos Cardíacos/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Animales , Fibrilación Atrial/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Noqueados , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1/metabolismo , Proteómica , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal
10.
Circ Res ; 123(8): 953-963, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30355031

RESUMEN

RATIONALE: Autosomal-dominant mutations in ryanodine receptor type 2 ( RYR2) are responsible for ≈60% of all catecholaminergic polymorphic ventricular tachycardia. Dysfunctional RyR2 subunits trigger inappropriate calcium leak from the tetrameric channel resulting in potentially lethal ventricular tachycardia. In vivo CRISPR/Cas9-mediated gene editing is a promising strategy that could be used to eliminate the disease-causing Ryr2 allele and hence rescue catecholaminergic polymorphic ventricular tachycardia. OBJECTIVE: To determine if somatic in vivo genome editing using the CRISPR/Cas9 system delivered by adeno-associated viral (AAV) vectors could correct catecholaminergic polymorphic ventricular tachycardia arrhythmias in mice heterozygous for RyR2 mutation R176Q (R176Q/+). METHODS AND RESULTS: Guide RNAs were designed to specifically disrupt the R176Q allele in the R176Q/+ mice using the SaCas9 ( Staphylococcus aureus Cas9) genome editing system. AAV serotype 9 was used to deliver Cas9 and guide RNA to neonatal mice by single subcutaneous injection at postnatal day 10. Strikingly, none of the R176Q/+ mice treated with AAV-CRISPR developed arrhythmias, compared with 71% of R176Q/+ mice receiving control AAV serotype 9. Total Ryr2 mRNA and protein levels were significantly reduced in R176Q/+ mice, but not in wild-type littermates. Targeted deep sequencing confirmed successful and highly specific editing of the disease-causing R176Q allele. No detectable off-target mutagenesis was observed in the wild-type Ryr2 allele or the predicted putative off-target site, confirming high specificity for SaCas9 in vivo. In addition, confocal imaging revealed that gene editing normalized the enhanced Ca2+ spark frequency observed in untreated R176Q/+ mice without affecting systolic Ca2+ transients. CONCLUSIONS: AAV serotype 9-based delivery of the SaCas9 system can efficiently disrupt a disease-causing allele in cardiomyocytes in vivo. This work highlights the potential of somatic genome editing approaches for the treatment of lethal autosomal-dominant inherited cardiac disorders, such as catecholaminergic polymorphic ventricular tachycardia.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Terapia Genética/métodos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/terapia , Potenciales de Acción/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Señalización del Calcio/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Vectores Genéticos , Frecuencia Cardíaca/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , ARN Guía de Kinetoplastida/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
11.
Heart Rhythm ; 15(4): 578-586, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29248564

RESUMEN

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disorder caused by mutations in the cardiac ryanodine receptor RyR2 that increase diastolic calcium cation (Ca2+) leak from the sarcoplasmic reticulum (SR). Calmodulin (CaM) dissociation from RyR2 has been associated with diastolic Ca2+ leak in heart failure. OBJECTIVE: Determine whether the tetracaine-derivative compound EL20 inhibits abnormal Ca2+ release from RyR2 in a CPVT model and investigate the underlying mechanism of inhibition. METHODS: Spontaneous Ca2+ sparks in cardiomyocytes and inducible ventricular tachycardia were assessed in a CPVT mouse model, which is heterozygous for the R176Q mutation in RyR2 (R176Q/+ mice) in the presence of EL20 or vehicle. Single-channel studies using sheep cardiac SR or purified RyR2 reconstituted into proteoliposomes with and without exogenous CaM were used to assess mechanisms of inhibition. RESULTS: EL20 potently inhibits abnormal Ca2+ release in R176Q/+ myocytes (half-maximal inhibitory concentration = 35.4 nM) and diminishes arrhythmia in R176Q/+ mice. EL20 inhibition of single-channel activity of purified RyR2 occurs in a similar range as seen in R176Q/+ myocytes (half-maximal inhibitory concentration = 8.2 nM). Inhibition of single-channel activity for cardiac SR or purified RyR2 supplemented with 100-nM or 1-µM CaM shows a 200- to 1000-fold reduction in potency. CONCLUSION: This work provides a potential therapeutic mechanism for the development of antiarrhythmic compounds that inhibit leaky RyR2 resulting from CaM dissociation, which is often associated with failing hearts. Our data also suggest that CaM dissociation may contribute to the pathogenesis of arrhythmias with the CPVT-linked R176Q mutation.


Asunto(s)
Antiarrítmicos/farmacología , Calmodulina/deficiencia , ADN/genética , Mutación , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Animales , Calcio/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes , Miocitos Cardíacos/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático , Ovinos , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patología
12.
Arch Biochem Biophys ; 615: 10-14, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28041937

RESUMEN

Here the molar volume and enthalpy changes associated with the early events in the folding of ferrocytochrome c (Cc) at high pH have been examined using time resolved photoacoustic calorimetry (PAC). The data reveal an overall volume change of 1.3 ± 0.3 mL mol-1 and an enthalpy change of 13 ± 7 kcal mol -1 occurring subsequent to photodissociation of the unfolded CO bound Cc species in <∼20 ns. Two additional kinetic phases are observed that are associated with non-native His binding (ΔH and ΔV of 2 ± 4 kcal mol-1 and -0.5 mL mol-1, τ âˆ¼ 2.5 µs ) and Met binding (ΔH and ΔV -0.4 ± 2 kcal mol-1 and -0.1 ± 0.1 mL mol-1, τ∼ 660 ns). Considering only protein conformational changes (excluding volume and enthalpies associated with heme ligation events) the initial conformational event exhibits a ΔH and ΔV of 6 ± 3 kcal mol-1 and -3±0.1 mL mol-1, respectively, that are attributed to a small contraction of the unfolded protein. The corresponding enthalpy associated with both native and non-native ligand binding are found to be -5±4 kcal mol-1 (Fe-Met) and +20 ± 4 kcal mol-1 (Fe-His) with the change in volume for both phases being essential negligible. This would indicate that non-native ligand binding likely occurs from an already collapsed conformation.


Asunto(s)
Calorimetría/métodos , Citocromos c/química , Miocardio/metabolismo , Acústica , Animales , Monóxido de Carbono/metabolismo , Caballos , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Solventes/química , Temperatura , Termodinámica , Factores de Tiempo
13.
Int J Cardiol ; 227: 668-673, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27838126

RESUMEN

RATIONALE: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal arrhythmic disorder caused by mutations in the type-2 ryanodine receptor (RyR2). Mutant RyR2 cause abnormal Ca2+ leak from the sarcoplasmic reticulum (SR), which is associated with the development of arrhythmias. OBJECTIVE: To determine whether derivatives of tetracaine, a local anesthetic drug with known RyR2 inhibiting action, could prevent CPVT induction by suppression of RyR2-mediated SR Ca2+ leak. METHODS AND RESULTS: Confocal microscopy was used to assess the effects of tetracaine and 9 derivatives (EL1-EL9) on spontaneous Ca2+ sparks in ventricular myocytes isolated from RyR2-R176Q/+ mice with CPVT. Whereas each derivative suppressed the Ca2+ spark frequency, derivative EL9 was most effective at the screening dose of 500nmol/L. At this high dose, the Ca2+ transient amplitude was not affected in myocytes from WT or R176Q/+ mice. The IC50 of EL9 was determined to be 13nmol/L, which is about 400× time lower than known RyR2 stabilizer K201. EL9 prevented the induction of ventricular tachycardia observed in placebo-treated R176Q/+ mice, without affecting heart rate or cardiac contractility. CONCLUSIONS: Tetracaine derivatives represent a novel class of RyR2 stabilizing drugs that could be used for the treatment of the potentially fatal disorder catecholaminergic polymorphic ventricular tachycardia.


Asunto(s)
Antiarrítmicos/uso terapéutico , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética , Tetracaína/análogos & derivados , Tetracaína/uso terapéutico , Anestésicos Locales/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Ratones , Ratones Transgénicos , Mutación/genética , Tiazepinas/farmacología , Tiazepinas/uso terapéutico , Resultado del Tratamiento
14.
Arch Biochem Biophys ; 612: 17-21, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27717638

RESUMEN

Treatment of horse heart Cytochrome-c (Cc) with N-chloro-4-toluosulfonamide (Chloramine-t, CT) results in the oxidation of methionine (Met) residues to the corresponding sulfoxide including the distal heme ligand, Met80. The resulting Fe-sulfoxide coordination is sufficiently labile in the ferrous form to be displaced by gaseous ligands, including CO. Photolysis of the CO-CT-Cc complex provides an opportunity to examine ligand binding dynamics that are associated with a relatively rigid distal heme pocket. In this work, photoacoustic calorimetry (PAC) was utilized to obtain the kinetics as well as enthalpy and molar volume changes subsequent to CO photo-dissociation from CO-CT-Cc. Previous photolysis studies of CO-CT-Cc have led to a proposed model for ligand recombination in which the Met80-sulfoxide and CO recombine with the heme on relatively slow timescales (50 µs and ∼500 µs, respectively). The PAC data presented here reveals two additional kinetic phases with lifetimes of <20 ns and 534 ± 75 ns. The fast phase (<20 ns) is associated with an ΔH of 44 ± 5 kcal mol-1 and ΔV of -0.5 ± 0.5 mL mol-1, whereas the slower phase (534 ns) is associated with a small ΔH of 2 ± 3 kcal mol-1 and ΔV of 1 ± 0.5 mL mol-1.


Asunto(s)
Calorimetría/métodos , Monóxido de Carbono/química , Cloraminas/química , Citocromos c/química , Miocardio/enzimología , Compuestos de Tosilo/química , Acústica , Animales , Sitios de Unión , Hemo/química , Caballos , Hierro/química , Cinética , Ligandos , Luz , Fotólisis , Conformación Proteica , Espectrofotometría Ultravioleta , Sulfóxidos/química , Termodinámica
15.
Artículo en Inglés | MEDLINE | ID: mdl-26606390

RESUMEN

The possibility of removing representative nonsteroidal anti-inflammatory drugs (NSAIDs) from water was tested using Octolig®, a commercially available material with polyethylenediimine moieties covalently attached to high-surface area silica gel. The effectiveness of removal should depend on selected NSAIDs having appropriate anionic functional groups. NSAIDs selected had aromatic carboxylic groups: diclofenac, fenoprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and sulindac. These substances in deionized (DI) water were removed by passage over Octolig columns with removal values approaching 90% at environmental pH values, e.g., ca pH 6. Fenoprofen, however, was only removed to an extent of 80% in DI water and 62% in well water, presumably a result of competition with bicarbonate ions.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26030684

RESUMEN

The possibility of removing certain pharmaceuticals (acetaminophen and naproxen) from water was tested using Octolig, a commercially available material with polyethylenediimine moieties covalently attached to high-surface area silica gel. In addition, the efficacy of two transition metals (cupric and ferric) derivatives of Octolig was tested. Previously amoxicillin had been successfully subjected to column chromatography for removal by means of ion encapsulation, the effectiveness of which would depend upon having appropriate anionic functional groups. Both pharmaceuticals were removed by passage over Octolig columns, though with less effectiveness than was achieved previously with xanthenylbenzenes or selected food dyes. Somewhat greater removal, ca 90%, was achieved using Cuprilig, the copper(II) derivative, but not with Ferrilig the iron(III) derivative, perhaps because the hydroxide counter ion was more closely associated with the transition metal ion and was not available to assist in proton removal.


Asunto(s)
Acetaminofén/análisis , Cobre/química , Restauración y Remediación Ambiental/métodos , Compuestos Férricos/química , Naproxeno/análisis , Soluciones/química , Contaminantes Químicos del Agua/química , Acetaminofén/química , Aniones/química , Cromatografía/métodos , Naproxeno/química , Gel de Sílice/química , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA