Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 12(34): 8229-8236, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34423990

RESUMEN

Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.

2.
Angew Chem Int Ed Engl ; 60(5): 2485-2492, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079422

RESUMEN

Surface passivation of perovskite solar cells (PSCs) using a low-cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA, N,N-bis(tert-butyloxycarbonyl)-quinacridone (TBOC-QA), followed by thermal annealing to convert TBOC-QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3 ) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3 thin films to 77.2° for QA coated MAPbI3 thin films. The stability of QA passivated MAPbI3 perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.

3.
Angew Chem Int Ed Engl ; 59(51): 23067-23071, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32876977

RESUMEN

The photophysical tuning is reported for a series of tetraphenylphosphonium (TPP) metal halide hybrids containing distinct metal halides, TPP2 MXn (MXn =SbCl5 , MnCl4 , ZnCl4 , ZnCl2 Br2 , ZnBr4 ), from efficient phosphorescence to ultralong afterglow. The afterglow properties of TPP+ cations could be suspended for the hybrids containing low band gap emissive metal halide species, such as SbCl5 2- and MnCl4 2- , but significantly enhanced for the hybrids containing wide band gap non-emissive ZnCl4 2- . Structural and photophysical studies reveal that the enhanced afterglow is attributed to stronger π-π stacking and intermolecular electronic coupling between TPP+ cations in TPP2 ZnCl4 than in the pristine organic ionic compound TPPCl. Moreover, the afterglow in TPP2 ZnX4 can be tuned by controlling the halide composition, with the change from Cl to Br resulting in a shorter afterglow due to the heavy atom effect.

4.
Inorg Chem ; 59(18): 13109-13116, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32865987

RESUMEN

Binuclear platinum(II) complexes with strong Pt-Pt interactions are an interesting class of luminescent materials, of which photophysical properties could be controlled via multiple ways through organic ligands and Pt-Pt distance. While a number of binuclear platinum(II) complexes have been developed with tunable emissions, achieving high photoluminescence quantum efficiency (PLQE) remains challenging and of great interest. Here we report the synthesis and characterization of a series of binuclear 2,4-difluorophenylpyridine platinum(II) complexes bridged by thiazol-2-thiolate ligands with different bulkiness. The three complexes were found to have short Pt-Pt distances ranging from 2.916 to 2.945 Å. The strong Pt-Pt interactions lead to pronounced metal-metal-to-ligand charge transfer (MMLCT) absorptions between 450 and 500 nm, and strong 3MMLCT emissions in the orange/red region. The PLQEs of the new complexes are in the ranges of 2-31% in solution and 26-100% in solid state. These complexes also exhibit excellent stability in halogenated solvents.

5.
ACS Appl Mater Interfaces ; 12(40): 45056-45063, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32909428

RESUMEN

The fabrication of efficient and spectrally stable pure-blue perovskite light-emitting diodes (LEDs) has been elusive and remains of great interest. Herein, we incorporate diammonium salts into quasi-2D perovskite precursors for phase control of multiple quantum well structures to yield tunable and efficient emission in the blue region. With detailed characterizations and computational studies, we show that in situ passivation by the diammonium salts effectively modifies the surface energies of quasi-2D phases and inhibits the growth of low-band gap quasi-2D and 3D phases. Such phase control and in situ passivation could afford blue light-emitting perovskite thin films with high photoluminescence quantum efficiencies of, for instance, 75% for the emission peak at 471 nm. Using this perovskite thin film as an emitting layer, spectrally stable pure-blue LEDs with an emission peak at 474 nm and a full width at half-maximum of 26 nm could be fabricated to exhibit a brightness of 290 cd m-2 at 8 V and an external quantum efficiency of 2.17%.

6.
Nat Commun ; 11(1): 4329, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859920

RESUMEN

Scintillation based X-ray detection has received great attention for its application in a wide range of areas from security to healthcare. Here, we report highly efficient X-ray scintillators with state-of-the-art performance based on an organic metal halide, ethylenebis-triphenylphosphonium manganese (II) bromide ((C38H34P2)MnBr4), which can be prepared using a facile solution growth method at room temperature to form inch sized single crystals. This zero-dimensional organic metal halide hybrid exhibits green emission peaked at 517 nm with a photoluminescence quantum efficiency of ~ 95%. Its X-ray scintillation properties are characterized with an excellent linear response to X-ray dose rate, a high light yield of ~ 80,000 photon MeV-1, and a low detection limit of 72.8 nGy s-1. X-ray imaging tests show that scintillators based on (C38H34P2)MnBr4 powders provide an excellent visualization tool for X-ray radiography, and high resolution flexible scintillators can be fabricated by blending (C38H34P2)MnBr4 powders with polydimethylsiloxane.

7.
Sci Adv ; 6(17): eaaz5961, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32426465

RESUMEN

Metal halide perovskite nanocrystals (NCs) have emerged as new-generation light-emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g., platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectrum. Despite remarkable advances in the field of perovskite NCs, many nanostructures in inorganic NCs have not yet been realized in metal halide perovskites, and producing highly efficient blue-emitting perovskite NCs remains challenging and of great interest. Here, we report the discovery of highly efficient blue-emitting cesium lead bromide (CsPbBr3) perovskite hollow NCs. By facile solution processing of CsPbBr3 precursor solution containing ethylenediammonium bromide and sodium bromide, in situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effect results in color tuning of CsPbBr3 NCs from green to blue, with high PLQEs of up to 81%.

8.
Angew Chem Int Ed Engl ; 59(33): 14120-14123, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32392395

RESUMEN

Zero-dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4 PbMn0.69 Sn0.31 Br8 , in which the organic cation N-benzylhexamethylenetetrammonium (HMTA+ , C13 H19 N4 + ) cocrystallizes with PbBr4 2- , MnBr4 2- , and SnBr4 2- . The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single-crystalline "host-guest" system to exhibit emissions from multiple "guest" metal halide species simultaneously. The combination of these emissions led to near-perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm- to cool-white emissions could be generated by controlling the excitation wavelength.

9.
ACS Appl Mater Interfaces ; 12(1): 1159-1168, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31825589

RESUMEN

The interfaces between perovskite and charge transport layers greatly impact the device efficiency and stability of perovskite solar cells (PSCs). Inserting an ultrathin wide-band-gap layer between perovskite and hole transport layers (HTLs) has recently been shown as an effective strategy to enhance device performance. Herein, a small amount of an organic halide salt, N,N'-dimethylethylene-1,2-diammonium iodide, is used to create two-dimensional (2D)-three-dimensional (3D) heterojunctions on MAPbI3 thin film surfaces by facile solution processing. The formation of an ultrathin wide-band-gap 2D perovskite layer on top of 3D MAPbI3 changes the morphological and photophysical properties of perovskite thin films, effectively reduces the surface defects, and suppresses the charge recombination in the interfaces between perovskite and HTL. As a result, a power conversion efficiency of ∼20.2%, with an open-circuit voltage of 1.14 V, a short-circuit current density of 22.57 mA cm-2, and a fill factor of 0.78, is achieved for PSCs with enhanced stability.

10.
J Phys Chem Lett ; 10(19): 5923-5928, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31529944

RESUMEN

Organometal halide perovskite materials, in particular colloidal perovskite nanocrystals (NCs), have been investigated extensively as next-generation light-emitting materials. However, producing highly efficient and stable perovskite thin films from colloidal NCs is not trivial, as dissociation of surfactants often occurs during the thin-film formation. Here, we demonstrate a facile solution-processing approach to prepare perovskite nanocomposite thin films by using phosphonium as the capping ligand for methylammonium lead bromide (MAPbBr3) NCs. The photoluminescence and stability of thin films containing in situ formed perovskite NCs were greatly enhanced after phosphonium passivation, with the photoluminescence quantum efficiency reaching 78% and only 5% decrease of the intensity after one month's exposure in ambient conditions. Electrically driven light-emitting diodes (LEDs) based on pristine perovskite neat thin films and organic-perovskite nanocomposite thin films were fabricated, and we observed a 10-fold improvement in the external quantum efficiency of these LEDs (from 0.6% to 6.3%) resulting from the in situ formation of perovskite NCs with phosphonium passivation.

11.
J Phys Chem Lett ; 10(19): 5836-5840, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31525868

RESUMEN

The rich chemistry of metal halide perovskites has enabled various methods of band structure control and surface passivation. Here we report a highly facile and efficient post-treatment approach for precise color tuning of cesium lead halide perovskite nanocrystals (NCs) with enhanced stability. By utilizing a special multifunctional organic ligand, triphenyl(9-phenyl-9H-carbazol-3-yl)phosphonium bromide (TPP-Carz), carbon-halide bond cleavage can be achieved to release halide ions from halogenated solvents in a controlled manner for color tuning of perovskite NCs via ion exchange. Besides controlled release of halide ions for anion exchange, TPP-Carz can effectively passivate the surfaces of perovskite NCs simultaneously. As a result, perovskite NCs prepared by this post-treatment method with tunable colors over the entire visible spectrum have shown significantly improved luminescence and stability in comparison to the ones prepared using reactive anion precursors without surface passivation by TPP-Carz.

12.
J Am Chem Soc ; 140(41): 13181-13184, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30230822

RESUMEN

The rich chemistry of organic-inorganic metal halide hybrids has enabled the development of a variety of crystalline structures with controlled morphological and molecular dimensionalities. Here we report for the first time a single crystalline assembly of metal halide clusters, (C9NH20)7(PbCl4)Pb3Cl11, in which lead chloride tetrahedrons (PbCl42-) and face-sharing lead chloride trimer clusters (Pb3Cl115-) cocrystallize with organic cations (C9NH20+) to form a periodical zero-dimensional (0D) structure at the molecular level. Blue light emission peaked at 470 nm with a photoluminescence quantum efficiency (PLQE) of around 83% was realized for this single crystalline hybrid material, which is attributed to the individual lead chloride clusters. Our discovery of single crystalline assembly of metal halide clusters paves a new path to functional cluster assemblies with highly tunable structures and remarkable properties.

13.
ACS Appl Mater Interfaces ; 10(36): 30051-30057, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30152995

RESUMEN

Here we report ultraviolet (UV)-pumped white-light-emitting diodes (WLEDs) with sunlike full spectrum emissions, by using a commercially available blue phosphor (BaMgAl10O17:Eu2+) and a series of broadband zero-dimensional (0D) organic metal halide hybrids as down conversion phosphors. By controlling the blend ratio of phosphors, we have achieved high-quality WLEDs with excellent general color rendering index (CRI Ra) of up to 99 and deep-red rendering index (R9) of up to 99. These WLEDs exhibiting white emissions with correlated color temperatures (CCTs) ranging from 3000 to 6000 K perfectly mimic sunlight at different times of day.

14.
Adv Mater ; 30(20): e1707093, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29602181

RESUMEN

Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m-2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.

15.
ACS Appl Mater Interfaces ; 9(46): 40446-40451, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29083158

RESUMEN

Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn2+ ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn2+ ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...