RESUMEN
Multiple neurodegenerative diseases are characterized by aberrant proteinaceous accumulations of tau. Here, we report a RING-in-between-RING-type E3 ligase, TRIAD3A, that functions as an autophagy adaptor for tau. TRIAD3A(RNF216) is an essential gene with mutations causing age-progressive neurodegeneration. Our studies reveal that TRIAD3A E3 ligase catalyses mixed K11/K63 polyubiquitin chains and self-assembles into liquid-liquid phase separated (LLPS) droplets. Tau is ubiquitinated and accumulates within TRIAD3A LLPS droplets and, via LC3 interacting regions, targets tau for autophagic degradation. Unexpectedly, tau sequestered within TRIAD3A droplets rapidly converts to fibrillar aggregates without the transitional liquid phase of tau. In vivo studies show that TRIAD3A decreases the accumulation of phosphorylated tau in a tauopathy mouse model, and a disease-associated mutation of TRIAD3A increases accumulation of phosphorylated tau, exacerbates gliosis and increases pathological tau spreading. In human Alzheimer disease brain, TRIAD3A co-localizes with tau amyloid in multiple histological forms, suggesting a role in tau proteostasis. TRIAD3A is an autophagic adaptor that utilizes E3 ligase and LLPS as a mechanism to capture cargo and appears especially relevant to neurodegenerative diseases.
Asunto(s)
Autofagia , Ubiquitina-Proteína Ligasas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/genética , Animales , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Fosforilación , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ubiquitinación , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Células HEK293 , Mutación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Femenino , Masculino , Separación de FasesRESUMEN
BACKGROUND: Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on µ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS: Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS: Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS: This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling.
Asunto(s)
Proteínas de Unión al GTP Monoméricas , Femenino , Masculino , Ratones , Animales , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Morfina/farmacología , Sirolimus/farmacología , Ratones Endogámicos C57BL , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dolor , Mamíferos/metabolismoRESUMEN
How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.
Asunto(s)
Vaina de Mielina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Animales , Ratones , Diferenciación Celular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Transgénicos , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismoRESUMEN
The calcium-selective ion channel Orai1 has a complex role in bone homeostasis, with defects in both bone production and resorption detected in Orai1 germline knock-out mice. To determine whether Orai1 has a direct, cell-intrinsic role in osteoblast differentiation and function, we bred Orai1 flox/flox (Orai1fl/fl) mice with Runx2-cre mice to eliminate its expression in osteoprogenitor cells. Interestingly, Orai1 was expressed in a mosaic pattern in Orai1fl/fl-Runx2-cre bone. Specifically, antibody labeling for Orai1 in vertebral sections was uniform in wild type animals, but patchy regions in Orai1fl/fl-Runx2-cre bone revealed Orai1 loss while in other areas expression persisted. Nevertheless, by micro-CT, bones from Orai1fl/fl-Runx2-cre mice showed reduced bone mass overall, with impaired bone formation identified by dynamic histomorphometry. Cortical surfaces of Orai1fl/fl-Runx2-cre vertebrae however exhibited patchy defects. In cell culture, Orai1-negative osteoblasts showed profound reductions in store-operated Ca2+ entry, exhibited greatly decreased alkaline phosphatase activity, and had markedly impaired substrate mineralization. We conclude that defective bone formation observed in the absence of Orai1 reflects an intrinsic role for Orai1 in differentiating osteoblasts.
Asunto(s)
Canales de Calcio , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Animales , Ratones , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones Noqueados , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Osteoblastos/metabolismoRESUMEN
Cocaine-induced changes in the expression of the glutamate-related scaffolding protein Homer2 influence this drug's psychostimulant and rewarding properties. In response to neuronal activity, Homer2 is phosphorylated on S117/S216 by calcium-calmodulin kinase IIα (CaMKIIα), which induces a rapid dissociation of mGlu5-Homer2 scaffolds. Herein, we examined the requirement for Homer2 phosphorylation in cocaine-induced changes in mGlu5-Homer2 coupling, to include behavioral sensitivity to cocaine. For this, mice with alanine point mutations at (S117/216)-Homer2 (Homer2AA/AA ) were generated, and we determined their affective, cognitive and sensorimotor phenotypes, as well as cocaine-induced changes in conditioned reward and motor hyperactivity. The Homer2AA/AA mutation prevented activity-dependent phosphorylation of S216 Homer2 in cortical neurons, but Homer2AA/AA mice did not differ from wild-type (WT) controls with respect to Morris maze performance, acoustic startle, spontaneous or cocaine-induced locomotion. Homer2AA/AA mice exhibited signs of hypoanxiety similar to the phenotype of transgenic mice with a deficit in signal-regulated mGluR5 phosphorylation (Grm5AA/AA ). However, opposite of Grm5AA/AA mice, Homer2AA/AA mice were less sensitive to the aversive properties of high-dose cocaine under both place-conditioning and taste-conditioning procedures. Acute injection with cocaine caused dissociation of mGluR5 and Homer2 in striatal lysates from WT, but not Homer2AA/AA mice, suggesting a molecular basis for the deficit in cocaine aversion. These findings indicate that CaMKIIα-dependent phosphorylation of Homer2 gates the negative motivational valence of high-dose cocaine via regulation of mGlu5 binding, furthering an important role for dynamic changes in mGlu5-Homer interactions in addiction vulnerability.
Asunto(s)
Cocaína , Ratones , Animales , Cocaína/farmacología , Ratones Noqueados , Fosforilación , Ratones Transgénicos , Condicionamiento PsicológicoRESUMEN
Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.
Asunto(s)
Demencia Frontotemporal , Microglía , Humanos , Ratones , Animales , Anciano , Microglía/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Sinapsis/metabolismo , Proteínas del Sistema Complemento/metabolismoRESUMEN
BACKGROUND: Memory deficits are central to many neuropsychiatric diseases. During acquisition of new information, memories can become vulnerable to interference, yet mechanisms that underlie interference are unknown. METHODS: We describe a novel transduction pathway that links the NMDA receptor (NMDAR) to AKT signaling via the immediate early gene Arc and evaluate its role in memory. The signaling pathway is validated using biochemical tools and transgenic mice, and function is evaluated in assays of synaptic plasticity and behavior. The translational relevance is evaluated in human postmortem brain. RESULTS: Arc is dynamically phosphorylated by CaMKII (calcium/calmodulin-dependent protein kinase II) and binds the NMDAR subunits NR2A/NR2B and a previously unstudied PI3K (phosphoinositide 3-kinase) adapter p55PIK (PIK3R3) in vivo in response to novelty or tetanic stimulation in acute slices. NMDAR-Arc-p55PIK recruits p110α PI3K and mTORC2 (mechanistic target of rapamycin complex 2) to activate AKT. NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT assembly occurs within minutes of exploratory behavior and localizes to sparse synapses throughout hippocampal and cortical regions. Studies using conditional (Nestin-Cre) p55PIK deletion mice indicate that NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT functions to inhibit GSK3 and mediates input-specific metaplasticity that protects potentiated synapses from subsequent depotentiation. p55PIK conditional knockout mice perform normally in multiple behaviors including working memory and long-term memory tasks but exhibit deficits indicative of increased vulnerability to interference in both short-term and long-term paradigms. The NMDAR-AKT transduction complex is reduced in postmortem brain of individuals with early Alzheimer's disease. CONCLUSIONS: A novel function of Arc mediates synapse-specific NMDAR-AKT signaling and metaplasticity that contributes to memory updating and is disrupted in human cognitive disease.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Transducción de Señal , Hipocampo/metabolismo , Ratones Transgénicos , Ratones Noqueados , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismoRESUMEN
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Asunto(s)
Cuerpo Celular , Neuronas , Animales , Ratones , Neuronas/metabolismo , Potenciales de Acción/fisiología , Hipocampo/fisiología , Calcio/metabolismoRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) early diagnosis remains a challenge to date. Alpha-feto protein, though less sensitive remains widely used for both diagnosis and prognosis. Recently however, a number of molecular biomarkers have been suggested as alternatives to Alpha feto protein, especially for early diagnosis. OBJECTIVE: To determine the role of the long non-coding RNA, LIPCAR in the pathogenesis and early diagnosis of hepatocellular carcinoma. METHODS: Quantitative real-time PCR, and Fluorescence in situ hybridization assays were conducted to determine LIPCAR expression in HCC vs normal blood samples, and HCC cell lines vs normal liver cell lines. Transfection was done to upregulate LIPCAR in one HCC cell line, and used to study cell proliferation, migration, apoptosis and epithelial-mesenchymal transformation. Animal experiment was finally done to determine its effect on metastasis. RESULTS: LIPCAR was significantly upregulated in HCC blood samples and HCC cell lines compared to their respective normal ones. Its overexpression promoted hepatocellular carcinoma cell proliferation, and migration, while inhibiting apoptosis. Its overexpression also promoted epithelial-mesenchymal transformation in hepatocellular carcinoma cells, and metastasis in vivo. CONCLUSION: The study demonstrated that the lncRNA, LIPCAR is significantly upregulated in hepatocellular carcinoma patients and that its upregulation promotes HCC proliferation, migration, and metastases.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Animales , ARN Largo no Codificante/genética , Carcinoma Hepatocelular/genética , Regulación hacia Arriba , Hibridación Fluorescente in Situ , Neoplasias Hepáticas/genética , Proliferación Celular/genéticaRESUMEN
The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.
Asunto(s)
Aminoácidos , Serina-Treonina Quinasas TOR , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Aminoácidos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Proteína Reguladora Asociada a mTOR/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T lymphocytes. Although various therapeutic approaches have been developed, refractoriness of chemotherapy and relapse cause a poor prognosis of the disease and further therapeutic strategies are required. Here, we report that Ras homolog enriched in brain (RHEB), a critical regulator of mTOR complex 1 activity, is a potential target for T-ALL therapy. In this study, we established an sgRNA library that comprehensively targeted mTOR upstream and downstream pathways, including autophagy. CRISPR/Cas9 dropout screening revealed critical roles of mTOR-related molecules in T-ALL cell survival. Among the regulators, we focused on RHEB because we previously found that it is dispensable for normal hematopoiesis in mice. Transcriptome and metabolic analyses revealed that RHEB deficiency suppressed de novo nucleotide biosynthesis, leading to human T-ALL cell death. Importantly, RHEB deficiency suppressed tumor growth in both mouse and xenograft models. Our data provide a potential strategy for efficient therapy of T-ALL by RHEB-specific inhibition.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.
Asunto(s)
Células del Asta Posterior , Prurito , Animales , Proteína C-Reactiva , Ratones , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Células del Asta Posterior/metabolismo , Prurito/genética , Receptores de Bombesina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Tuberous sclerosis complex (TSC) is caused by mutations in Tsc1 or Tsc2, whose gene products inhibit the small G-protein Rheb1. Rheb1 activates mTORC1, which may cause refractory epilepsy, intellectual disability, and autism. The mTORC1 inhibitors have been used for TSC patients with intractable epilepsy. However, its effectiveness for cognitive symptoms remains unclear. We found a new signaling pathway for synapse formation through Rheb1 activation, but not mTORC1. Here, we show that treatment with the farnesyltransferase inhibitor lonafarnib increased unfarnesylated (inactive) Rheb1 levels and restored synaptic abnormalities in cultured Tsc2+/- neurons, whereas rapamycin did not enhance spine synapse formation. Lonafarnib treatment also restored the plasticity-related Arc (activity-regulated cytoskeleton-associated protein) expression in cultured Tsc2+/- neurons. Lonafarnib action was partly dependent on the Rheb1 reduction with syntenin. Oral administration of lonafarnib increased unfarnesylated protein levels without affecting mTORC1 and MAP (mitogen-activated protein (MAP)) kinase signaling, and restored dendritic spine morphology in the hippocampi of male Tsc2+/- mice. In addition, lonafarnib treatment ameliorated contextual memory impairments and restored memory-related Arc expression in male Tsc2+/- mice in vivo Heterozygous Rheb1 knockout in male Tsc2+/- mice reproduced the results observed with pharmacological treatment. These results suggest that the Rheb1 activation may be responsible for synaptic abnormalities and memory impairments in Tsc2+/- mice, and its inhibition by lonafarnib could provide insight into potential treatment options for TSC-associated neuropsychiatric disorders.SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) is an autosomal-dominant disease that causes neuropsychiatric symptoms, including intractable epilepsy, intellectual disability (ID) and autism. No pharmacological treatment for ID has been reported so far. To develop a pharmacological treatment for ID, we investigated the mechanism of TSC and found that Rheb1 activation is responsible for synaptic abnormalities in TSC neurons. To inhibit Rheb1 function, we used the farnesyltransferase inhibitor lonafarnib, because farnesylation of Rheb1 is required for its activation. Lonafarnib treatment increased inactive Rheb1 and recovered proper synapse formation and plasticity-related Arc (activity-regulated cytoskeleton-associated protein) expression in TSC neurons. Furthermore, in vivo lonafarnib treatment restored contextual memory and Arc induction in TSC mice. Together, Rheb1 inhibition by lonafarnib could provide insight into potential treatments for TSC-associated ID.
Asunto(s)
Epilepsia Refractaria , Discapacidad Intelectual , Esclerosis Tuberosa , Animales , Cognición , Farnesiltransferasa , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Esclerosis Tuberosa/genéticaRESUMEN
The authors want to notify that they have made the following changes to the author list of the paper [...].
RESUMEN
Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type-dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.
Asunto(s)
Aminoácidos/metabolismo , Encéfalo/metabolismo , Complejos Multiproteicos/metabolismo , Vaina de Mielina/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Eliminación de Gen , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Modelos Biológicos , Células-Madre Neurales/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , TransgenesRESUMEN
Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.
RESUMEN
Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.
RESUMEN
Mutations of SHANK3 cause Phelan-McDermid syndrome (PMS), and these individuals can exhibit sensitivity to stress, resulting in behavioral deterioration. Here, we examine the interaction of stress with genotype using a mouse model with face validity to PMS. In Shank3ΔC/+ mice, swim stress produces an altered transcriptomic response in pyramidal neurons that impacts genes and pathways involved in synaptic function, signaling, and protein turnover. Homer1a, which is part of the Shank3-mGluR-N-methyl-D-aspartate (NMDA) receptor complex, is super-induced and is implicated in the stress response because stress-induced social deficits in Shank3ΔC/+ mice are mitigated in Shank3ΔC/+;Homer1a-/- mice. Several lines of evidence demonstrate that Shank3 expression is regulated by Homer1a in competition with crosslinking forms of Homer, and consistent with this model, Shank3 expression and function that are reduced in Shank3ΔC/+ mice are rescued in Shank3ΔC/+;Homer1a-/- mice. Studies highlight the interaction between stress and genetics and focus attention on activity-dependent changes that may contribute to pathogenesis.
Asunto(s)
Proteínas de Andamiaje Homer/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estrés Psicológico/metabolismo , Animales , Deleción Cromosómica , Trastornos de los Cromosomas/metabolismo , Trastornos de los Cromosomas/fisiopatología , Cromosomas Humanos Par 22/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Proteínas de Andamiaje Homer/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Células Piramidales/metabolismo , Estrés Psicológico/fisiopatologíaRESUMEN
Homer represents a diversified family of scaffold and transduction proteins made up of several isoforms. Here, we present preliminary observations on skeletal muscle adaptation and plasticity in a transgenic model of Homer 2-/- mouse using a multifaceted approach entailing morphometry, quantitative RT-PCR (Reverse Transcription PCR), confocal immunofluorescence, and electrophysiology. Morphometry shows that Soleus muscle (SOL), at variance with Extensor digitorum longus muscle (EDL) and Flexor digitorum brevis muscle (FDB), displays sizable reduction of fibre cross-sectional area compared to the WT counterparts. In SOL of Homer 2-/- mice, quantitative RT-PCR indicated the upregulation of Atrogin-1 and Muscle ring finger protein 1 (MuRF1) genes, and confocal immunofluorescence showed the decrease of neuromuscular junction (NMJ) Homer content. Electrophysiological measurements of isolated FDB fibres from Homer 2-/- mice detected the exclusive presence of the adult ε-nAChR isoform excluding denervation. As for NMJ morphology, data were not conclusive, and further work is needed to ascertain whether the null Homer 2 phenotype induces any endplate remodelling. Within the context of adaptation and plasticity, the present data show that Homer 2 is a co-regulator of the normotrophic status in a muscle specific fashion.
RESUMEN
Background: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Early detection of HCC can significantly improve patients' outcomes. An increasing number of studies have validated that Homer is dysregulated in cancers and may serve as diagnostic markers. In the present study, we investigated the expression profile and diagnostic significance of Homer2 and Homer3 in hepatitis B virus-induced HCC (HBV-HCC). Methods: Quantitative real-time PCR (QRT-PCR), western blot analysis and immunohistochemistry analysis. Results: Homer2 and Homer3 were downregulated in HCC. The expression of Homer2 was associated with tumor differentiation grade (P= 0.012) and total protein (TP) level (P= 0.032). Homer3 was related to tumor size (P= 0.010), tumor nodes (P= 0.026) and γ-glutamyl transferase (GGT) level (P= 0.001). The receiver operating characteristic curve analyses indicated that the combination of Homer2, Homer3 and AFP possessed a high accuracy (AUC=0.900) to diagnose HCC cases from healthy controls. Conclusion: Our data indicated that Homer2 and Homer3 were downregulated in HCC and might be potential diagnostic marker for HCC.