Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 128(11): 2000-2012, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002342

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a very poor prognosis due to its silent development and metastatic profile with a 5-year survival rate below 10%. PDAC is characterised by an abundant desmoplastic stroma modulation that influences cancer development by extracellular matrix/cell interactions. Elastin is a key element of the extracellular matrix. Elastin degradation products (EDPs) regulate numerous biological processes such as cell proliferation, migration and invasion. The aim of the present study was to characterise for the first time the effect of two EDPs with consensus sequences "GxxPG" and "GxPGxGxG" (VG-6 and AG-9) on PDAC development. The ribosomal protein SA (RPSA) has been discovered recently, acting as a new receptor of EDPs on the surface of tumour cells, contributing to poor prognosis. METHODS: Six week-old female Swiss nude nu/nu (Nu(Ico)-Foxn1nu) mice were subcutaneously injected with human PDAC MIA PaCa-2/eGFP-FLuc+ cells, transduced with a purpose-made lentiviral vector, encoding green fluorescent protein (GFP) and Photinus pyralis (firefly) luciferase (FLuc). Animals were treated three times per week with AG-9 (n = 4), VG-6 (n = 5) or PBS (n = 5). The influence of EDP on PDAC was examined by multimodal imaging (bioluminescence imaging (BLI), fluorescence imaging (FLI) and magnetic resonance imaging (MRI). Tumour volumes were also measured using a caliper. Finally, immunohistology was performed at the end of the in vivo study. RESULTS: After in vitro validation of MIA PaCa-2 cells by optical imaging, we demonstrated that EDPs exacerbate tumour growth in the PDAC mouse model. While VG-6 stimulated tumour growth to some extent, AG-9 had greater impact on tumour growth. We showed that the expression of the RPSA correlates with a possible effect of EDPs in the PDAC model. Multimodal imaging allowed for longitudinal in vivo follow-up of tumour development. In all groups, we showed mature vessels ending in close vicinity of the tumour, except for the AG-9 group where mature vessels are penetrating the tumour reflecting an increase of vascularisation. CONCLUSIONS: Our results suggest that AG-9 strongly increases PDAC progression through an increase in tumour vascularisation.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Femenino , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Elastina/farmacología , Xenoinjertos , Imagen Multimodal , Neoplasias Pancreáticas/patología , Péptidos/farmacología
2.
Nutrients ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235819

RESUMEN

Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.


Asunto(s)
Catequina , Síndrome de Down , Animales , Antioxidantes/farmacología , Catequina/farmacología , Catequina/uso terapéutico , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Té/química
3.
Front Med (Lausanne) ; 9: 815739, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223915

RESUMEN

The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (µCT) and magnetic resonance imaging (µMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.

4.
Sci Rep ; 11(1): 4715, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633179

RESUMEN

Trisomy of human chromosome 21 (Down syndrome, DS) alters development of multiple organ systems, including the face and underlying skeleton. Besides causing stigmata, these facial dysmorphologies can impair vital functions such as hearing, breathing, mastication, and health. To investigate the therapeutic potential of green tea extracts containing epigallocatechin-3-gallate (GTE-EGCG) for alleviating facial dysmorphologies associated with DS, we performed an experimental study with continued pre- and postnatal treatment with two doses of GTE-EGCG supplementation in a mouse model of DS, and an observational study of children with DS whose parents administered EGCG as a green tea supplement. We evaluated the effect of high (100 mg/kg/day) or low doses (30 mg/kg/day) of GTE-EGCG, administered from embryonic day 9 to post-natal day 29, on the facial skeletal development in the Ts65Dn mouse model. In a cross-sectional observational study, we assessed the facial shape in DS and evaluated the effects of self-medication with green tea extracts in children from 0 to 18 years old. The main outcomes are 3D quantitative morphometric measures of the face, acquired either with micro-computed tomography (animal study) or photogrammetry (human study). The lowest experimentally tested GTE-EGCG dose improved the facial skeleton morphology in a mouse model of DS. In humans, GTE-EGCG supplementation was associated with reduced facial dysmorphology in children with DS when treatment was administered during the first 3 years of life. However, higher GTE-EGCG dosing disrupted normal development and increased facial dysmorphology in both trisomic and euploid mice. We conclude that GTE-EGCG modulates facial development with dose-dependent effects. Considering the potentially detrimental effects observed in mice, the therapeutic relevance of controlled GTE-EGCG administration towards reducing facial dysmorphology in young children with Down syndrome has yet to be confirmed by clinical studies.


Asunto(s)
Catequina/análogos & derivados , Suplementos Dietéticos , Síndrome de Down/tratamiento farmacológico , Cara , , Adolescente , Animales , Catequina/química , Catequina/uso terapéutico , Niño , Preescolar , Suplementos Dietéticos/análisis , Modelos Animales de Enfermedad , Síndrome de Down/patología , Cara/patología , Femenino , Humanos , Lactante , Masculino , Ratones , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Té/química
5.
Sci Rep ; 10(1): 16181, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999350

RESUMEN

In spite of many compounds identified as antifibrotic in preclinical studies, pulmonary fibrosis remains a life-threatening condition for which highly effective treatment is still lacking. Towards improving the success-rate of bench-to-bedside translation, we investigated in vivo µCT-derived biomarkers to repeatedly quantify experimental silica-induced pulmonary fibrosis and assessed clinically relevant readouts up to several months after silicosis induction. Mice were oropharyngeally instilled with crystalline silica or saline and longitudinally monitored with respiratory-gated-high-resolution µCT to evaluate disease onset and progress using scan-derived biomarkers. At weeks 1, 5, 9 and 15, we assessed lung function, inflammation and fibrosis in subsets of mice in a cross-sectional manner. Silica-instillation increased the non-aerated lung volume, corresponding to onset and progression of inflammatory and fibrotic processes not resolving with time. Moreover, total lung volume progressively increased with silicosis. The volume of healthy, aerated lung first dropped then increased, corresponding to an acute inflammatory response followed by recovery into lower elevated aerated lung volume. Imaging results were confirmed by a significantly decreased Tiffeneau index, increased neutrophilic inflammation, increased IL-13, MCP-1, MIP-2 and TNF-α concentration in bronchoalveolar lavage fluid, increased collagen content and fibrotic nodules. µCT-derived biomarkers enable longitudinal evaluation of early onset inflammation and non-resolving pulmonary fibrosis as well as lung volumes in a sensitive and non-invasive manner. This approach and model of non-resolving lung fibrosis provides quantitative assessment of disease progression and stabilization over weeks and months, essential towards evaluation of fibrotic disease burden and antifibrotic therapy evaluation in preclinical studies.


Asunto(s)
Pulmón/diagnóstico por imagen , Fibrosis Pulmonar/diagnóstico por imagen , Silicosis/diagnóstico por imagen , Animales , Biomarcadores , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Dióxido de Silicio , Silicosis/metabolismo , Silicosis/patología , Microtomografía por Rayos X
6.
Sci Rep ; 10(1): 18772, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33128010

RESUMEN

Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ventrículos Cerebrales/diagnóstico por imagen , Medios de Contraste/administración & dosificación , Cara/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Animales , Barrera Hematoencefálica , Encéfalo/anatomía & histología , Ventrículos Cerebrales/anatomía & histología , Medios de Contraste/farmacocinética , Cara/anatomía & histología , Yoduros/administración & dosificación , Ratones , Cráneo/anatomía & histología
7.
Proc Natl Acad Sci U S A ; 117(43): 26955-26965, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33037151

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus has infected millions of people of which more than half a million succumbed to the viral disease, COVID-19. The urgent need for an effective treatment together with a lack of small animal infection models has led to clinical trials using repurposed drugs without preclinical evidence of their in vivo efficacy. We established an infection model in Syrian hamsters to evaluate the efficacy of small molecules on both infection and transmission. Treatment of SARS-CoV-2-infected hamsters with a low dose of favipiravir or hydroxychloroquine with(out) azithromycin resulted in, respectively, a mild or no reduction in virus levels. However, high doses of favipiravir significantly reduced infectious virus titers in the lungs and markedly improved lung histopathology. Moreover, a high dose of favipiravir decreased virus transmission by direct contact, whereas hydroxychloroquine failed as prophylaxis. Pharmacokinetic modeling of hydroxychloroquine suggested that the total lung exposure to the drug did not cause the failure. Our data on hydroxychloroquine (together with previous reports in macaques and ferrets) thus provide no scientific basis for the use of this drug in COVID-19 patients. In contrast, the results with favipiravir demonstrate that an antiviral drug at nontoxic doses exhibits a marked protective effect against SARS-CoV-2 in a small animal model. Clinical studies are required to assess whether a similar antiviral effect is achievable in humans without toxic effects.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Hidroxicloroquina/uso terapéutico , Pirazinas/uso terapéutico , Amidas/farmacocinética , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Cricetinae , Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Hidroxicloroquina/farmacocinética , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Pirazinas/farmacocinética , SARS-CoV-2 , Resultado del Tratamiento , Células Vero , Carga Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
EJNMMI Res ; 10(1): 73, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32607918

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have shown potential for treatment of different diseases. However, their working mechanism is still unknown. To elucidate this, the non-invasive and longitudinal tracking of MSCs would be beneficial. Both iron oxide-based nanoparticles (Fe3O4 NPs) for magnetic resonance imaging (MRI) and radiotracers for positron emission tomography (PET) have shown potential as in vivo cell imaging agents. However, they are limited by their negative contrast and lack of spatial information as well as short half-life, respectively. In this proof-of-principle study, we evaluated the potential of Fe3O4@Al(OH)3 NPs as dual PET/MRI contrast agents, as they allow stable binding of [18F]F- ions to the NPs and thus, NP visualization and quantification with both imaging modalities. RESULTS: 18F-labeled Fe3O4@Al(OH)3 NPs (radiolabeled NPs) or mouse MSCs (mMSCs) labeled with these radiolabeled NPs were intravenously injected in healthy C57Bl/6 mice, and their biodistribution was studied using simultaneous PET/MRI acquisition. While liver uptake of radiolabeled NPs was seen with both PET and MRI, mMSCs uptake in the lungs could only be observed with PET. Even some initial loss of fluoride label did not impair NPs/mMSCs visualization. Furthermore, no negative effects on blood cell populations were seen after injection of either the NPs or mMSCs, indicating good biocompatibility. CONCLUSION: We present the application of novel 18F-labeled Fe3O4@Al(OH)3 NPs as safe cell tracking agents for simultaneous PET/MRI. Combining both modalities allows fast and easy NP and mMSC localization and quantification using PET at early time points, while MRI provides high-resolution, anatomic background information and long-term NP follow-up, hereby overcoming limitations of the individual imaging modalities.

9.
Phys Med Biol ; 65(24): 245016, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32590380

RESUMEN

This study evaluates the performance of the Bruker positron emission tomograph (PET) insert combined with a BioSpec 70/30 USR magnetic resonance imaging (MRI) scanner using the manufacturer acceptance protocol and the NEMA NU 4-2008 for small animal PET. The PET insert is made of 3 rings of 8 monolithic LYSO crystals (50 × 50 × 10 mm3) coupled to silicon photomultipliers (SiPM) arrays, conferring an axial and transaxial FOV of 15 cm and 8 cm. The MRI performance was evaluated with and without the insert for the following radiofrequency noise, magnetic field homogeneity and image quality. For the PET performance, we extended the NEMA protocol featuring system sensitivity, count rates, spatial resolution and image quality to homogeneity and accuracy for quantification using several MRI sequences (RARE, FLASH, EPI and UTE). The PET insert does not show any adverse effect on the MRI performances. The MR field homogeneity is well preserved (Diameter Spherical Volume, for 20 mm of 1.98 ± 4.78 without and -0.96 ± 5.16 Hz with the PET insert). The PET insert has no major effect on the radiofrequency field. The signal-to-noise ratio measurements also do not show major differences. Image ghosting is well within the manufacturer specifications (<2.5%) and no RF noise is visible. Maximum sensitivity of the PET insert is 11.0% at the center of the FOV even with simultaneous acquisition of EPI and RARE. PET MLEM resolution is 0.87 mm (FWHM) at 5 mm off-center of the FOV and 0.97 mm at 25 mm radial offset. The peaks for true/noise equivalent count rates are 410/240 and 628/486 kcps for the rat and mouse phantoms, and are reached at 30.34/22.85 and 27.94/22.58 MBq. PET image quality is minimally altered by the different MRI sequences. The Bruker PET insert shows no adverse effect on the MRI performance and demonstrated a high sensitivity, sub-millimeter resolution and good image quality even during simultaneous MRI acquisition.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Animales , Diseño de Equipo , Modelos Lineales , Ratones , Fantasmas de Imagen , Ratas , Relación Señal-Ruido
10.
Sci Rep ; 9(1): 17598, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772203

RESUMEN

Implementation of in vivo high-resolution micro-computed tomography (µCT), a powerful tool for longitudinal analysis of murine lung disease models, is hampered by the lack of data on cumulative low-dose radiation effects on the investigated disease models. We aimed to measure radiation doses and effects of repeated µCT scans, to establish cumulative radiation levels and scan protocols without relevant toxicity. Lung metastasis, inflammation and fibrosis models and healthy mice were weekly scanned over one-month with µCT using high-resolution respiratory-gated 4D and expiration-weighted 3D protocols, comparing 5-times weekly scanned animals with controls. Radiation dose was measured by ionization chamber, optical fiberradioluminescence probe and thermoluminescent detectors in a mouse phantom. Dose effects were evaluated by in vivo µCT and bioluminescence imaging read-outs, gold standard endpoint evaluation and blood cell counts. Weekly exposure to 4D µCT, dose of 540-699 mGy/scan, did not alter lung metastatic load nor affected healthy mice. We found a disease-independent decrease in circulating blood platelets and lymphocytes after repeated 4D µCT. This effect was eliminated by optimizing a 3D protocol, reducing dose to 180-233 mGy/scan while maintaining equally high-quality images. We established µCT safety limits and protocols for weekly repeated whole-body acquisitions with proven safety for the overall health status, lung, disease process and host responses under investigation, including the radiosensitive blood cell compartment.


Asunto(s)
Microtomografía por Rayos X/métodos , Animales , Bleomicina/efectos adversos , Células Sanguíneas/efectos de la radiación , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/secundario , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Mediciones Luminiscentes , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos DBA , Fantasmas de Imagen , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Dosis de Radiación , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/prevención & control , Tolerancia a Radiación , Radiometría , Microtomografía por Rayos X/efectos adversos
11.
J Transl Med ; 16(1): 1, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316942

RESUMEN

BACKGROUND: Plasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers. The discovery of blood-based biomarkers associated with ELVs requires methods that isolate high yields of these EVs without significant contamination with highly abundant plasma proteins and lipoproteins. The rising interest in blood-based EV-associated biomarkers has led to the rapid development of novel EV isolation methods. However, the field suffers from a lack of standardization and often, new techniques are used without critical evaluation. Size exclusion chromatography (SEC) has become the method of choice for rapid isolation of relatively pure EVs from plasma, yet it has technical limitations for certain downstream applications. The recently released exoEasy kit (Qiagen) is a new membrane affinity spin column method for the isolation of highly pure EVs from biofluids with the potential to overcome most of the limitations of SEC. METHODS: By using multiple complementary techniques we assessed the performance of the exoEasy kit in isolating ELVs from 2 ml of human plasma and compared it with the SEC qEV column (Izon Science). RESULTS: Our data show that exoEasy kit isolates a heterogenous mixture of particles with a larger median diameter, broader size range and a higher yield than the SEC qEV column. The exclusive presence of small RNAs in the particles and the total RNA yield were comparable to the SEC qEV column. Despite being less prone to low density lipoprotein contamination than the SEC qEV column, the overall purity of exoEasy kit EV preparations was suboptimal. The low particle-protein ratio, significant amount of albumin, very low levels of exosome-associated proteins and propensity to triglyceride-rich lipoprotein contamination suggest isolation of mainly non-ELVs and co-isolation of plasma proteins and certain lipoproteins by the exoEasy kit. CONCLUSIONS: We demonstrate that performance of exoEasy kit for the isolation of ELVs for biomarker discovery is inferior to the SEC qEV column. This comprehensive evaluation of a novel EV isolation method contributes to the acceleration of the discovery of EV-associated biomarkers and the development of EV-based diagnostics.


Asunto(s)
Cromatografía de Afinidad/métodos , Cromatografía en Gel/métodos , Exosomas/metabolismo , Plasma/metabolismo , Proteínas Sanguíneas/metabolismo , Exosomas/ultraestructura , Humanos , Lipoproteínas/metabolismo , Membranas , Nanopartículas/química , ARN/metabolismo
12.
Int J Cancer ; 137(7): 1539-48, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25784292

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfolípidos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/química , Humanos , Neoplasias Pulmonares/química , Fosfatidilinositoles/metabolismo , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Esfingomielinas/metabolismo , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA