Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551708

RESUMEN

Glioblastoma (GBM) is the most common malignant neoplasm in adults among all CNS gliomas, with the 5-year survival rate being as low as 5%. Among nanocarriers, liposomal nanoformulations are considered as a promising tool for precise drug delivery. The herein presented study demonstrates the possibility of encapsulating four selected natural compounds (curcumin, bisdemethoxycurcumin, acteoside, and orientin) and their mixtures in cationic liposomal nanoformulation composed of two lipid types (DOTAP:POPC). In order to determine the physicochemical properties of the new drug carriers, specific measurements, including particle size, Zeta Potential, and PDI index, were applied. In addition, NMR and EPR studies were carried out for a more in-depth characterization of nanoparticles. Within biological research, the prepared formulations were evaluated on T98G and U-138 MG glioblastoma cell lines in vitro, as well as on a non-cancerous human lung fibroblast cell line (MRC-5) using the MTT test to determine their potential as anticancer agents. The highest activity was exhibited by liposome-entrapped acteoside towards the T98G cell line with IC50 equal 2.9 ± 0.9 µM after 24 hours of incubation. Noteworthy, curcumin and orientin mixture in liposomal formulation exhibited a synergistic effect against GBM. Moreover, the impact on the expression of apoptosis-associated proteins (p53 and Caspase-3) of acteoside as well as curcumin and orientin mixture, as the most potent agents, was assessed, showing nearly 40% increase as compared to control U-138 MG and T98G cells. It should be emphasized that a new and alternative method of extrusion of the studied liposomes was developed.

2.
Pharmaceutics ; 14(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35890227

RESUMEN

Diclofenac (DC) [2-(2,6-Dichloroanilino)phenyl]acetic acid,) and aceclofenac (AC) 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxyacetic acid in substantia were subjected to ionizing radiation in the form of a beam of high-energy electrons from an accelerator in a standard sterilization dose of 25 kGy and higher radiation doses (50-400 kGy). We characterized non-irradiated and irradiated samples of DC and AC by using the following methods: organoleptic analysis (color, form), spectroscopic (IR, NMR, EPR), chromatographic (HPLC), and others (microscopic analysis, capillary melting point measurement, differential scanning calorimetry (DSC)). It was found that a absorbed dose of 50 kGy causes a change in the color of AC and DC from white to cream-like, which deepens with increasing radiation dose. No significant changes in the FT-IR spectra were observed, while no additional peaks were observed in the chromatograms, indicating emerging radio-degradation products (25 kGy). The melting point determined by the capillary method was 153.0 °C for AC and 291.0 °C for DC. After irradiation with the dose of 25 kGy for AC, it did not change, for DC it decreased by 0.5 °C, while for the dose of 400 kGy it was 151.0 °C and 286.0 °C for AC and DC, respectively. Both NSAIDs exhibit high radiation stability for typical sterilization doses of 25-50 kGy and are likely to be sterilized with radiation at a dose of 25 kGy. The influence of irradiation on changes in molecular dynamics and structure has been observed by 1H-NMR and EPR studies. This study aimed to determine the radiation stability of DC and AC by spectrophotometric, thermal and chromatographic methods. A standard dose of irradiation (25 kGy) was used to confirm the possibility of using this dose to obtain a sterile form of both NSAIDs. Higher doses of radiation (50-400 kGy) have been performed to explain the changes in DC and AC after sterilization.

3.
Materials (Basel) ; 15(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35160897

RESUMEN

Improvement of the bioavailability of poorly soluble medicinal substances is currently one of the major challenges for pharmaceutical industry. Enhancing the dissolution rate of those drugs using novel methods allows to increase their bioavailability. In recent years, silica-based mesoporous materials have been proposed as drug delivery systems that augment the dissolution rate. The aim of this study was to analyse the influence of phenylbutazone adsorption on SBA-15 on its dissolution rate. Moreover, we examined the cytotoxicity of the analyzed silica. The material was characterized by SEM, TEM, DSC, 1H-NMR, XRD, and FT-IR. The phenylbutazone did not adsorb on unmodified SBA-15, while the adsorption on APTES-modified SBA-15 resulted in 50.43 mg/g of loaded phenylbutazone. Phenylbutazone adsorbed on the APTES-modified SBA-15 was then released in the hydrochloric acidic medium (pH 1.2) and phosphate buffer (pH 7.4) and compared to the dissolution rate of the crystalline phenylbutazone. The release profiles of the amorphous form of adsorbed phenylbutazone are constant in different pH, while the dissolution rate of the crystalline phenylbutazone depends on the pH. The cytotoxicity assays were performed using the Caco-2 cell line. Our results indicate that the analyzed material ensured phenylbutazone adsorption in an amorphous state inside the mesopores and increased its dissolution rate in various pH levels. Furthermore, the cytotoxicity assay proved safety of studied material. Our study demonstrated that APTES-modified SBA-15 can serve as a non-toxic drug carrier that improves the bioavailability of phenylbutazone.

4.
Eur J Pharm Sci ; 171: 106133, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066153

RESUMEN

An increasing proportion of new medicinal substances are poorly soluble in water. Adsorption on mesoporous silicas increases their bioavailability when administered orally. Loading method determines adsorption either on the surface in crystalline state or inside the mesopores in amorphus form. The aim of this study was to compare two methods (adsorption equilibrium and solvent evaporation) of lornoxicam adsorption on SBA-15 and APTES-modified SBA-15 in terms of drug adsorption site. Additionally, we investigated the drug release profiles at different pH and cytotoxicity of the analysed mesoporous materials. The materials were characterized by a number of physicochemical techniques including X-ray diffraction, nitrogen adsorption/desorption techniques, differential scanning calorimetry, thermogravimetric analysis, scanning and transmission electron microscopy, infrared spectroscopy and 1H NMR. Lornoxicam was loaded on the studied materials and released in the media (HCl pH 1.2, phosphate buffers pH 6.8 and 7.4). The cytotoxicity assays of APTES-modified SBA-15 were performed on CaCo-2 human colon cancer cell line. We proved that adsorption equilibrium method is a more advantageous method of loading. It ensures drug adsorption in an amorphous state inside the mesopores. The solvent evaporation method, despite a greater amount of loaded drug, results in drug adsorption in a crystalline state on the silica surface. In drug release studies a greater amount of lornoxicam is released from modified materials compared to crystalline lornoxicam. Cytotoxicity study proved the safety of APTES-modified silica. We concluded that APTES-modified SBA-15 is applicable as an effective and non-toxic carrier for the poorly soluble drug lornoxicam. The adsorption equilibrium method should be the preferred loading method. It enables the adsorption of sparingly soluble substances inside the mesoproes and enhances bioavailability of oral pharmaceutical forms.


Asunto(s)
Portadores de Fármacos , Dióxido de Silicio , Adsorción , Células CACO-2 , Portadores de Fármacos/química , Humanos , Piroxicam/análogos & derivados , Porosidad , Dióxido de Silicio/química , Solubilidad , Difracción de Rayos X
5.
Polymers (Basel) ; 13(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34960887

RESUMEN

This review addresses the impact of different nanoadditives on the glass transition temperature (Tg) of polyvinyl chloride (PVC), which is a widely used industrial polymer. The relatively high Tg limits its temperature-dependent applications. The objective of the review is to present the state-of-the-art knowledge on the influence of nanofillers of various origins and dimensions on the Tg of the PVC. The Tg variations induced by added nanofillers can be probed mostly by such experimental techniques as thermomechanical analysis (TMA), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and dielectric thermal analysis (DETA). The increase in Tg is commonly associated with the use of mineral and carbonaceous nanofillers. In this case, a rise in the concentration of nanoadditives leads to an increase in the Tg due to a restraint of the PVC macromolecular chain's mobility. The lowering of Tg may be attributed to the well-known plasticizing effect, which is a consequence of the incorporation of oligomeric silsesquioxanes to the polymeric matrix. It has been well established that the variation in the Tg value depends also on the chemical modification of nanofillers and their incorporation into the PVC matrix. This review may be an inspiration for further investigation of nanofillers' effect on the PVC glass transition temperature.

6.
Pharmaceutics ; 13(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34683986

RESUMEN

The effectiveness of oral drug administration is related to the solubility of a drug in the gastrointestinal tract and its ability to penetrate the biological membranes. As most new drugs are poorly soluble in water, there is a need to develop novel drug carriers that improve the dissolution rate and increase bioavailability. The aim of this study was to analyze the modification of sulindac release profiles in various pH levels with two APTES ((3-aminopropyl)triethoxysilane)-modified SBA-15 (Santa Barbara Amorphous-15) silicas differing in 3-aminopropyl group content. Furthermore, we investigated the cytotoxicity of the analyzed molecules. The materials were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning and transmission electron microscopy, proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Sulindac loaded on the SBA-15 was released in the hydrochloric acidic medium (pH 1.2) and phosphate buffers (pH 5.8, 6.8, and 7.4). The cytotoxicity studies were performed on Caco-2 cell line. The APTES-modified SBA-15 with a lower adsorption capacity towards sulindac released the drug in a less favorable manner. However, both analyzed materials improved the dissolution rate in acidic pH, as compared to crystalline sulindac. Moreover, the SBA-15, both before and after drug adsorption, exhibited insignificant cytotoxicity towards Caco-2 cells. The presented study evidenced that SBA-15 could serve as a non-toxic drug delivery system that enhances the dissolution rate of sulindac and improves its bioavailability.

7.
Materials (Basel) ; 13(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859082

RESUMEN

Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer for PLLA/wood composites. Pine wood particles dispersed within PLLA act as nucleating agents able to start the growth of PLLA crystals, resulting in a faster crystallization rate and increased crystal fraction. Moreover, the composites have a slightly lower thermal stability compared to PLLA, proportional to filler content, due to the lower thermal stability of wood. Molecular dynamics was investigated using the solid-state 1H NMR technique, which revealed restrictions in the mobility of polymer chains upon the addition of wood, as well as enhanced interfacial adhesion between the filler and matrix in the composites compatibilized with APE. The enhanced interfacial adhesion in silane-treated composites was also proved by scanning electron microscopy and resulted in slightly improved deformability and impact resistance of the composites.

8.
Solid State Nucl Magn Reson ; 81: 8-10, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27960099

RESUMEN

Molecular dynamics of the solid 3-(trifluoromethyl) benzoic acid containing proton 1H and fluorine 19F nuclei was explored by the solid-state NMR off - resonance technique. Contrary to the previous experiments the proton nuclei system I relaxed in the off - resonance effective field B→e while fluorine nuclei system S was saturated for short time in comparison to the relaxation time T1I. New cross - relaxation solid - state NMR off - resonance experiments were conducted on a homebuilt pulse spectrometer operating at the on-resonance frequency of 30.2MHz, at the off - resonance frequency varied between 30.2 and 30.6MHz for protons and at the frequency of 28.411MHz for fluorines, respectively. Based on the experimental data the dispersions of the proton off - resonance spin - lattice relaxation rate ρρI, the fluorine off - resonance spin - lattice relaxation rate ρρS and the cross - relaxation rate σρ in the rotating frame were determined.

9.
Solid State Nucl Magn Reson ; 71: 67-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26344135

RESUMEN

Molecular motions in poly(ethylene-co-norbornene) were studied in a temperature range well below its glass transition point by a few techniques based on the NMR phenomenon. Temperature dependencies of proton spin-lattice relaxation times T1 (at 200 MHz and at 30.2 MHz), proton spin-lattice relaxation time in the rotating frame T1ρ (at 68 kHz) and frequency dispersion of proton spin-lattice off-resonance relaxation times in the rotating frame T1ρ(off) were determined for the copolymer. Analysis of (1)H NMR relaxation data permitted characterization of local motions occurring in the copolymer i.e. rotation of methyl groups around C3 axes, reorientations of methylene groups and motions of segments of polymer chains including norbornene groups.

10.
Solid State Nucl Magn Reson ; 71: 73-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26272112

RESUMEN

Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411 MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6 MHz and at the frequency of 28.411 MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics.

11.
Solid State Nucl Magn Reson ; 53: 38-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23664759

RESUMEN

This work presents the theoretical analysis of cross-relaxation and its applications to the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. The solid state NMR experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively. It is worth noting that this spectrometer includes a specially designed probe which simultaneously works at two slightly differing frequencies for protons and fluorine nuclei with complete absence of their interference. Contrary to a large number of previous cross-relaxation studies, in our experiments proton spins can be polarized in the magnetic field B0 or excited by rf pulses, while fluorine spins are continuously saturated for a long time. The saturation of fluorines is maintained throughout the whole duration of the experiment. It leads to a simplification of the mathematical analysis of the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...