Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 417, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580813

RESUMEN

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.


Asunto(s)
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Transducción de Señal , Ligandos , Receptores Adrenérgicos
2.
Biochem Pharmacol ; : 116007, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38145828

RESUMEN

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.

3.
Pharmacol Res Perspect ; 10(3): e00975, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35643970

RESUMEN

A2A and A2B adenosine receptors produce regionally selective regulation of vascular tone and elicit differing effects on mean arterial pressure (MAP), whilst inducing tachycardia. The tachycardia induced by the stimulation of A2A or A2B receptors has been suggested to be mediated by a reflex increase in sympathetic activity. Here, we have investigated the role of ß1 - and ß2 -adrenoceptors in mediating the different cardiovascular responses to selective A2A and A2B receptor stimulation. Hemodynamic variables were measured in conscious male Sprague-Dawley rats (350-450 g) via pulsed Doppler flowmetry. The effect of intravenous infusion (3 min per dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1.0 µg.kg-1 .min-1 ) or the A2B -selective agonist BAY 60-6583 (4.0, 13.3, 40.0 µg.kg-1 .min-1 ) in the absence or following pre-treatment with the non-selective ß-antagonist propranolol (1.0 mg.kg-1 ), the selective ß1 -antagonist CGP 20712A (200 µg.kg-1 ), or the selective ß2 -antagonist ICI 118,551 (2.0 mg.kg-1 ) was investigated (maintenance doses also administered). CGP 20712A and propranolol significantly reduced the tachycardic response to CGS 21680, with no change in the effect on MAP. ICI 118,551 increased BAY 60-6583-mediated renal and mesenteric flows, but did not affect the heart rate response. CGP 20712A attenuated the BAY 60-6583-induced tachycardia. These data imply a direct stimulation of the sympathetic activity via cardiac ß1 -adrenoceptors as a mechanism for the A2A - and A2B -induced tachycardia. However, the regionally selective effects of A2B agonists on vascular conductance were independent of sympathetic activity and may be exploitable for the treatment of acute kidney injury and mesenteric ischemia.


Asunto(s)
Antagonistas Adrenérgicos beta , Propranolol , Adenosina/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Presión Sanguínea , Masculino , Propranolol/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/fisiología , Taquicardia/inducido químicamente
4.
JRSM Cardiovasc Dis ; 11: 20480040221092893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646334

RESUMEN

Animal models are essential for assessing cardiovascular responses to novel therapeutics. Cardiovascular safety liabilities represent a leading cause of drug attrition and better preclinical measurements are essential to predict drug-related toxicities. Presently, radiotelemetric approaches recording blood pressure are routinely used in preclinical in vivo haemodynamic assessments, providing valuable information on therapy-associated cardiovascular effects. Nonetheless, this technique is chiefly limited to the monitoring of blood pressure and heart rate alone. Alongside these measurements, Doppler flowmetry can provide additional information on the vasculature by simultaneously measuring changes in blood flow in multiple different regional vascular beds. However, due to the time-consuming and expensive nature of this approach, it is not widely used in the industry. Currently, analysis of waveform data obtained from telemetry and Doppler flowmetry typically examines averages or peak values of waveforms. Subtle changes in the morphology and variability of physiological waveforms have previously been shown to be early markers of toxicity and pathology. Therefore, a detailed analysis of pressure and flowmetry waveforms could enhance the understanding of toxicological mechanisms and the ability to translate these preclinical observations to clinical outcomes. In this review, we give an overview of the different approaches to monitor the effects of drugs on cardiovascular parameters (particularly regional blood flow, heart rate and blood pressure) and suggest that further development of waveform analysis could enhance our understanding of safety pharmacology, providing valuable information without increasing the number of in vivo studies needed.

5.
FASEB J ; 36(4): e22214, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35230706

RESUMEN

Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Hemodinámica/efectos de los fármacos , Receptor de Adenosina A2A/fisiología , Receptor de Adenosina A2B/fisiología , Adenosina/análogos & derivados , Adenosina/farmacología , Aminopiridinas/farmacología , Animales , Células HEK293 , Humanos , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Masculino , Fenetilaminas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Triazoles/farmacología , Vasodilatación/efectos de los fármacos , Xantinas/farmacología
6.
Nat Protoc ; 16(10): 4650-4675, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400840

RESUMEN

Ca2+ handling within cardiac myocytes underpins coordinated contractile function within the beating heart. This protocol enables high spatial and temporal Ca2+ imaging of ex vivo multicellular myocardial strips. The endocardial surface is retained, and strips of 150-300-µm thickness are dissected, loaded with Ca2+ indicators and mounted within 1.5 h. A list of the equipment and reagents used and the key methodological aspects allowing the use of this technique on strips from any chamber of the mammalian heart are described. We have successfully used this protocol on human, pig and rat biopsy samples. On use of this protocol with intact endocardial endothelium, we demonstrated that the myocytes develop asynchronous spontaneous Ca2+ events, which can be ablated by electrically evoked Ca2+ transients, and subsequently redevelop spontaneously after cessation of stimulation. This protocol thus offers a rapid and reliable method for studying the Ca2+ signaling underpinning cardiomyocyte contraction, in both healthy and diseased tissue.


Asunto(s)
Señalización del Calcio , Miocardio , Miocitos Cardíacos , Animales , Contracción Miocárdica , Ratas , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA