Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 57(4): 890-903.e6, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38518779

RESUMEN

The early appearance of broadly neutralizing antibodies (bNAbs) in serum is associated with spontaneous hepatitis C virus (HCV) clearance, but to date, the majority of bNAbs have been isolated from chronically infected donors. Most of these bNAbs use the VH1-69 gene segment and target the envelope glycoprotein E2 front layer. Here, we performed longitudinal B cell receptor (BCR) repertoire analysis on an elite neutralizer who spontaneously cleared multiple HCV infections. We isolated 10,680 E2-reactive B cells, performed BCR sequencing, characterized monoclonal B cell cultures, and isolated bNAbs. In contrast to what has been seen in chronically infected donors, the bNAbs used a variety of VH genes and targeted at least three distinct E2 antigenic sites, including sites previously thought to be non-neutralizing. Diverse front-layer-reactive bNAb lineages evolved convergently, acquiring breadth-enhancing somatic mutations. These findings demonstrate that HCV clearance-associated bNAbs are genetically diverse and bind distinct antigenic sites that should be the target of vaccine-induced bNAbs.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Anticuerpos ampliamente neutralizantes , Epítopos , Anticuerpos Neutralizantes , Proteínas del Envoltorio Viral/genética
2.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35389888

RESUMEN

BackgroundBreakthrough SARS-CoV-2 infections in vaccinated individuals have been previously associated with suboptimal humoral immunity. However, less is known about breakthrough infections with the Omicron variant.MethodsWe analyzed SARS-CoV-2-specific antibody and cellular responses in healthy vaccine recipients who experienced breakthrough infections a median of 50 days after receiving a booster mRNA vaccine with an ACE2 binding inhibition assay and an ELISpot assay, respectively.ResultsWe found that high levels of antibodies inhibited vaccine strain spike protein binding to ACE2 but that lower levels inhibited Omicron variant spike protein binding to ACE2 in 4 boosted vaccine recipients prior to infection. The levels of antibodies that inhibited vaccine strain and Omicron spike protein binding after breakthrough in 18 boosted vaccine recipients were similar to levels seen in COVID-19-negative boosted vaccine recipients. In contrast, boosted vaccine recipients had significantly stronger T cell responses to both vaccine strain and Omicron variant spike proteins at the time of breakthrough.ConclusionOur data suggest that breakthrough infections with the Omicron variant can occur despite robust immune responses to the vaccine strain spike protein.FundingThis work was supported by the Johns Hopkins COVID-19 Vaccine-related Research Fund and by funds from the National Institute of Allergy and Infectious Disease intramural program as well as awards from the National Cancer Institute (U54CA260491) and the National Institutes of Allergy and Infectious Disease (K08AI156021 and U01AI138897).


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Hipersensibilidad , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...