RESUMEN
Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).
RESUMEN
Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos del Sueño-Vigilia , Niño , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Lipidómica , Calidad de Vida , Australia/epidemiología , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/complicaciones , ADN Helicasas , Proteínas Nucleares , Factores de TranscripciónRESUMEN
We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.
Asunto(s)
Desarrollo del Adolescente , Encéfalo , Adolescente , Niño , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estudios Longitudinales , Imagen por Resonancia Magnética , Queensland , GemelosRESUMEN
BACKGROUND: Prior work suggests that higher fruit and vegetable consumption may protect against depression in older adults. Better understanding of the influence of genetic and environmental factors on fruit and vegetable intakes may lead to the design of more effective dietary strategies to increase intakes. In turn this may reduce the occurrence of depression in older adults. OBJECTIVES: The primary aim of this study is to estimate the genetic and environmental influences on the consumption of fruit and vegetables in older adults. The secondary aim is an exploratory analysis into possible shared genetic influences on fruit and vegetable intakes and depression. METHODS: Analysis of observational data from 374 twins (67.1% female; 208 monozygotic (MZ); 166 dizygotic (DZ)) aged ≥ 65 years drawn from the Older Australian Twins Study. Dietary data were obtained using a validated food frequency questionnaire and depressive symptoms were measured using the 15-item short form Geriatric Depression Scale. The contribution of genetic and environmental influences on fruit and vegetable intake were estimated by comparing MZ and DZ twin intakes using structural equation modelling. A tri-variate twin model was used to estimate the genetic and environmental correlation between total fruit and vegetable intakes and depression. RESULTS: In this study, vegetable intake was moderately influenced by genetics (0.39 95%CI 0.22, 0.54). Heritability was highest for brassica vegetables (0.40 95%CI 0.24, 0.54). Overall fruit intake was not significantly heritable. No significant genetic correlations were detected between fruit and vegetable intake and depressive symptoms. CONCLUSIONS: Vegetable consumption, particularly bitter tasting brassica vegetables, was significantly influenced by genetics, although environmental influences were also apparent. Consumption of fruit was only influenced by the environment, with no genetic influence detected, suggesting strategies targeting the food environment may be particularly effective for encouraging fruit consumption.
Asunto(s)
Frutas , Verduras , Humanos , Femenino , Anciano , Masculino , Frutas/genética , Depresión/epidemiología , Depresión/genética , Australia/epidemiología , Dieta , Conducta AlimentariaRESUMEN
BACKGROUND: Subjective cognitive complaints (SCCs) may be a precursor to mild cognitive impairment (MCI) and dementia. OBJECTIVE: This study aimed to examine the heritability of SCCs, correlations between SCCs and memory ability, and the influence of personality and mood on these relationships. METHODS: Participants were 306 twin pairs. The heritability of SCCs and the genetic correlations between SCCs and memory performance, personality, and mood scores were determined using structural equation modelling. RESULTS: SCCs were low to moderately heritable. Memory performance, personality and mood were genetically, environmentally, and phenotypically correlated with SCCs in bivariate analysis. However, in multivariate analysis, only mood and memory performance had significant correlations with SCCs. Mood appeared to be related to SCCs by an environmental correlation, whereas memory performance was related to SCCs by a genetic correlation. The link between personality and SCCs was mediated by mood. SCCs had a significant amount of both genetic and environmental variances not explained by memory performance, personality, or mood. CONCLUSION: Our results suggest that SCCs are influenced both by a person's mood and their memory performance, and that these determinants are not mutually exclusive. While SCCs had genetic overlap with memory performance and environmental association with mood, much of the genetic and environmental components that comprised SCCs were specific to SCCs, though these specific factors are yet to be determined.
Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Anciano , Pruebas Neuropsicológicas , Australia , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Trastornos del Conocimiento/psicología , CogniciónRESUMEN
Healthy metabolic measures in humans are associated with longevity. Dysregulation leads to metabolic syndrome (MetS) and negative health outcomes. Recent exceptional longevity (EL) genome wide association studies have facilitated estimation of an individual's polygenic risk score (PRS) for EL. We tested the hypothesis that individuals with high ELPRS have a low prevalence of MetS. Participants were from five cohorts of middle-aged to older adults. The primary analyses were performed in the UK Biobank (UKBB) (n = 407,800, 40-69 years). Replication analyses were undertaken using three Australian studies: Hunter Community Study (n = 2122, 55-85 years), Older Australian Twins Study (n = 539, 65-90 years) and Sydney Memory and Ageing Study (n = 925, 70-90 years), as well as the Swedish Gothenburg H70 Birth Cohort Studies (n = 2273, 70-93 years). MetS was defined using established criteria. Regressions and meta-analyses were performed with the ELPRS and MetS and its components. Generally, MetS prevalence (22-30%) was higher in the older cohorts. In the UKBB, high EL polygenic risk was associated with lower MetS prevalence (OR = 0.94, p = 1.84 × 10-42) and its components (p < 2.30 × 10-8). Meta-analyses of the replication cohorts showed nominal associations with MetS (p = 0.028) and 3 MetS components (p < 0.05). This work suggests individuals with a high polygenic risk for EL have a healthy metabolic profile promoting longevity.
Asunto(s)
Longevidad , Síndrome Metabólico , Humanos , Anciano , Persona de Mediana Edad , Longevidad/genética , Estudio de Asociación del Genoma Completo , Australia , Síndrome Metabólico/epidemiología , Síndrome Metabólico/genética , Factores de Riesgo , MetabolomaRESUMEN
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Asunto(s)
Dislexia , Estudio de Asociación del Genoma Completo , Niño , Adulto , Humanos , Dislexia/genética , Dislexia/psicología , Lectura , Lenguaje , Pueblo AsiaticoRESUMEN
The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%-72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%-77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%-16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).
Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Hermanos , Gemelos , Adulto , Encéfalo , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Gemelos/genética , Adulto JovenRESUMEN
In this prospective study of mental health, we examine the influence of three interrelated traits - perceived stress, rumination, and daytime sleepiness - and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9-14 years at baseline and 152 pairs aged 10-16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8-11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic-pituitary-adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.
Asunto(s)
Depresión , Trastornos de Somnolencia Excesiva , Adolescente , Ansiedad/genética , Ansiedad/psicología , Depresión/genética , Trastornos de Somnolencia Excesiva/psicología , Humanos , Estudios Prospectivos , Estrés Psicológico/genética , Estrés Psicológico/psicologíaRESUMEN
Transcriptional changes involved in neuronal recovery after sports-related concussion (SRC) may be obscured by inter-individual variation in mRNA expression and nonspecific changes related to physical exertion. Using a co-twin study, the objective of this study was to identify important differences in mRNA expression among a single pair of monozygotic (MZ) twins discordant for concussion. A pair of MZ twins were enrolled as part of a larger study of concussion biomarkers among collegiate athletes. During the study, Twin A sustained SRC, allowing comparison of mRNA expression to the nonconcussed Twin B. Twin A clinically recovered by Day 7. mRNA expression was measured pre-injury and at 6 h and 7 days postinjury using Affymetrix HG-U133 Plus 2.0 microarray. Changes in mRNA expression from pre-injury to each postinjury time point were compared between the twins; differences >1.5-fold were considered important. Kyoto Encyclopedia of Genes and Genomes identified biologic networks associated with important transcripts. Among 38,000 analyzed genes, important changes were identified in 153 genes. The ErbB (epidermal growth factor receptor) signaling pathway was identified as the top transcriptional network from pre-injury to 7 days postinjury. Genes in this pathway with important transcriptional changes included epidermal growth factor (2.41), epiregulin (1.73), neuregulin 1 (1.54) and mechanistic target of rapamycin (1.51). In conclusion, the ErbB signaling pathway was identified as a potential regulator of clinical recovery in a MZ twin pair discordant for SRC. A co-twin study design may be a useful method for identifying important gene pathways associated with concussion recovery.
Asunto(s)
Deportes , Gemelos Monocigóticos , Atletas , Humanos , ARN Mensajero , Transducción de Señal/genética , Gemelos Monocigóticos/genéticaRESUMEN
Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones Febriles , Proteínas de Pez Cebra/metabolismo , Animales , Epilepsia/genética , Epilepsia del Lóbulo Temporal/genética , Genómica , Gliosis/patología , Hipocampo/patología , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Esclerosis/patología , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Pez CebraRESUMEN
There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.
Asunto(s)
Trastorno Autístico/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Trastorno Autístico/diagnóstico , Conducta , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Fenotipo , Filogenia , Especificidad de la EspecieRESUMEN
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
RESUMEN
BACKGROUND AND PURPOSE: The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS: We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS: We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION: The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability.
Asunto(s)
Electroencefalografía , Estudio de Asociación del Genoma Completo , Encéfalo , Mapeo Encefálico , Humanos , Procesamiento de Señales Asistido por ComputadorRESUMEN
On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.
Asunto(s)
Conectoma , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , GemelosRESUMEN
OBJECTIVE: We sought to test the hypothesis that Polygenic Risk Scores (PRSs) have strong capacity to discriminate cases of ankylosing spondylitis (AS) from healthy controls and individuals in the community with chronic back pain. METHODS: PRSs were developed and validated in individuals of European and East Asian ethnicity, using data from genome-wide association studies in 15 585 AS cases and 20 452 controls. The discriminatory values of PRSs in these populations were compared with other widely used diagnostic tests, including C-reactive protein (CRP), HLA-B27 and sacroiliac MRI. RESULTS: In people of European descent, PRS had high discriminatory capacity with area under the curve (AUC) in receiver operator characteristic analysis of 0.924. This was significantly better than for HLA-B27 testing alone (AUC=0.869), MRI (AUC=0.885) or C-reactive protein (AUC=0.700). PRS developed and validated in individuals of East Asian descent performed similarly (AUC=0.948). Assuming a prior probability of AS of 10% such as in patients with chronic back pain under 45 years of age, compared with HLA-B27 testing alone, PRS provides higher positive values for 35% of patients and negative predictive values for 67.5% of patients. For PRS, in people of European descent, the maximum positive predictive value was 78.2% and negative predictive value was 100%, whereas for HLA-B27, these values were 51.9% and 97.9%, respectively. CONCLUSIONS: PRS have higher discriminatory capacity for AS than CRP, sacroiliac MRI or HLA-B27 status alone. For optimal performance, PRS should be developed for use in the specific ethnic groups to which they are to be applied.
Asunto(s)
Dolor de Espalda/diagnóstico , Dolor Crónico/diagnóstico , Herencia Multifactorial , Articulación Sacroiliaca/diagnóstico por imagen , Espondilitis Anquilosante/diagnóstico , Adulto , Pueblo Asiatico , Dolor de Espalda/genética , Dolor de Espalda/metabolismo , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Dolor Crónico/genética , Dolor Crónico/metabolismo , Femenino , Antígeno HLA-B27/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Factores de Riesgo , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/metabolismo , Población BlancaRESUMEN
Ageing is associated with a decrease in odour identification. Additionally, deficits in olfaction have been linked to age-related disease and mortality. Heritability studies suggest genetic variation contributes to olfactory identification. The olfactory receptor (OR) gene family is the largest in the human genome and responsible for overall odour identification. In this study, we sought to find olfactory gene family variants associated with individual and overall odour identification and to examine the relationships between polygenic risk scores (PRS) for olfactory-related phenotypes and olfaction. Participants were Caucasian older adults from the Sydney Memory and Ageing Study and the Older Australian Twins Study with genome-wide genotyping data (n = 1395, mean age = 75.52 ± 6.45). The Brief-Smell Identification Test (BSIT) was administered in both cohorts. PRS were calculated from independent GWAS summary statistics for Alzheimer's disease (AD), white matter hyperintensities (WMH), Parkinson's disease (PD), hippocampal volume and smoking. Associations with olfactory receptor genes (n = 967), previously identified candidate olfaction-related SNPs (n = 36) and different PRS with BSIT scores (total and individual smells) were examined. All of the relationships were analysed using generalised linear mixed models (GLMM), adjusted for age and sex. Genes with suggestive evidence for odour identification were found for 8 of the 12 BSIT items. Thirteen out of 36 candidate SNPs previously identified from the literature were suggestively associated with several individual BSIT items but not total score. PRS for smoking, WMH and PD were negatively associated with chocolate identification. This is the first study to conduct genetic analyses with individual odorant identification, which found suggestive olfactory-related genes and genetic variants for multiple individual BSIT odours. Replication in independent and larger cohorts is needed.
Asunto(s)
Envejecimiento/fisiología , Percepción Olfatoria , Polimorfismo de Nucleótido Simple , Receptores Odorantes/genética , Olfato , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: Adolescence is a risk period for the development of mental illness, as well as a time for pronounced change in sleep behaviour. While prior studies, including several meta-analyses show a relationship between sleep and depressive symptoms, there were many inconsistences found in the literature. OBJECTIVE: To investigate the relationship between subjective sleep and depressive symptoms. METHODS: Following PRISMA guidelines, we conducted a literature search that yielded forty-nine recent studies (2014-2020) with adolescent samples aged 9 to 25-year-olds, and more than double the sample size of previous meta-analyses (N = 318,256). RESULTS: In a series of meta-analyses, we show that while several common categories of subjective sleep are associated with depressive symptoms in adolescents, the strength of this relationship varies. Measures of sleep perception: poor sleep quality (r = 0.41), insomnia (r = 0.37), sleep disturbances (r = 0.36), wake after sleep onset (r = 0.31), and daytime sleepiness (r = 0.30) correlated more strongly with depressive symptoms, than measures of sleep behaviour: sleep latency (r = 0.22), and sleep duration (r = -0.19). CONCLUSIONS: These findings suggest that in studies of depressive symptoms it may be important to assess an adolescent's perception about their sleep, in addition to their sleep/wake behaviours.