Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(1)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296598

RESUMEN

BACKGROUND: Skin cancers, particularly keratinocyte cancers, are the most commonly diagnosed tumors. Although surgery is often effective in early-stage disease, skin tumors are not always easily accessible, can reoccur and have the ability to metastasize. More recently, immunotherapies, including intravenously administered checkpoint inhibitors, have been shown to control some skin cancers, but with off-target toxicities when used in combination. Our study investigated whether peritumoral administration of an antibody combination targeting PD-1, 4-1BB (CD137) and VISTA might control skin tumors and lead to circulating antitumor immunity without off-target toxicity. METHODS: The efficacy of combination immunotherapy administered peritumorally or intravenously was tested using transplantable tumor models injected into mouse ears (primary tumors) or subcutaneously in flank skin (secondary tumors). Changes to the tumor microenvironment were tracked using flow cytometry while tumor-specific, CD8 T cells were identified through enzyme-linked immunospot (ELISPOT) assays. Off-target toxicity of the combination immunotherapy was assessed via serum alanine aminotransferase ELISA and histological analysis of liver sections. RESULTS: The data showed that local administration of antibody therapy eliminated syngeneic murine tumors transplanted in the ear skin at a lower dose than required intravenously, and without measured hepatic toxicity. Tumor elimination was dependent on CD8 T cells and was associated with an increased percentage of CD8 T cells expressing granzyme B, KLRG1 and Eomes, and a decreased population of CD4 T cells including CD4+FoxP3+ cells in the treated tumor microenvironment. Importantly, untreated, distal tumors regressed following antibody treatment of a primary tumor, and immune memory prevented growth of subcutaneous flank tumors administered 50 days after regression of a primary tumor. CONCLUSIONS: Together, these data suggest that peritumoral immunotherapy for skin tumors offers advantages over conventional intravenous delivery, allowing antibody dose sparing, improved safety and inducing long-term systemic memory. Future clinical trials of immunotherapy for primary skin cancer should focus on peritumoral delivery of combinations of immune checkpoint antibodies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Cutáneas , Animales , Ratones , Inmunomodulación , Anticuerpos/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
2.
Pharmaceutics ; 15(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36839923

RESUMEN

Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant.

3.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551637

RESUMEN

Immune checkpoint blockade (ICB) is now standard of care for several metastatic epithelial cancers and prolongs life expectancy for a significant fraction of patients. A hostile tumor microenvironment (TME) induced by intrinsic oncogenic signaling induces an immunosuppressive niche that protects the tumor cells, limiting the durability and efficacy of ICB therapies. Addition of receptor tyrosine kinase inhibitors (RTKi) as potential modulators of an unfavorable local immune environment has resulted in moderate life expectancy improvement. Though the combination strategy of ICB and RTKi has shown significantly better results compared to individual treatment, the benefits and adverse events are additive whereas synergy of benefit would be preferable. There is therefore a need to investigate the potential of inhibitors other than RTKs to reduce malignant cell survival while enhancing anti-tumor immunity. In the last five years, preclinical studies have focused on using small molecule inhibitors targeting cell cycle and DNA damage regulators such as CDK4/6, CHK1 and poly ADP ribosyl polymerase (PARP) to selectively kill tumor cells and enhance cytotoxic immune responses. This review provides a comprehensive overview of the available drugs that attenuate immunosuppression and overcome hostile TME that could be used to boost FDA-approved ICB efficacy in the near future.

4.
Cancers (Basel) ; 13(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282763

RESUMEN

Non-melanoma skin cancers (NMSC) have a higher incidence than all other cancers combined with cutaneous squamous cell carcinoma (cSCC), capable of metastasis, representing approximately 20% of NMSCs. Given the accessibility of the skin, surgery is frequently employed to treat localized disease, although certain localities, the delineation of clear margins, frequency and recurrence of tumors can make these cancers inoperable in a subset of patients. Other treatment modalities, including cryotherapy, are commonly used for individual lesions, with varying success. Immunotherapy, particularly with checkpoint antibodies, is increasingly a promising therapeutic approach in many cancers, offering the potential advantage of immune memory for protection against lesion recurrence. This review addresses a role for PD-1, 4-1BB and VISTA checkpoint antibodies as monotherapies, or in combination as a therapeutic treatment for both early and late-stage cSCC.

5.
Vaccines (Basel) ; 9(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065557

RESUMEN

The development of cancer vaccines has been intensively pursued over the past 50 years with modest success. However, recent advancements in the fields of genetics, molecular biology, biochemistry, and immunology have renewed interest in these immunotherapies and allowed the development of promising cancer vaccine candidates. Numerous clinical trials testing the response evoked by tumour antigens, differing in origin and nature, have shed light on the desirable target characteristics capable of inducing strong tumour-specific non-toxic responses with increased potential to bring clinical benefit to patients. Novel delivery methods, ranging from a patient's autologous dendritic cells to liposome nanoparticles, have exponentially increased the abundance and exposure of the antigenic payloads. Furthermore, growing knowledge of the mechanisms by which tumours evade the immune response has led to new approaches to reverse these roadblocks and to re-invigorate previously suppressed anti-tumour surveillance. The use of new drugs in combination with antigen-based therapies is highly targeted and may represent the future of cancer vaccines. In this review, we address the main antigens and delivery methods used to develop cancer vaccines, their clinical outcomes, and the new directions that the vaccine immunotherapy field is taking.

6.
Oncotarget ; 8(31): 51733-51747, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881682

RESUMEN

Because cancer stem cells (CSCs) have been implicated in chemo-resistance, metastasis and tumor recurrence, therapeutic targeting of CSCs holds promise to address these clinical challenges to cancer treatment. VS-4718 and VS-6063 are potent inhibitors of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that mediates cell signals transmitted by integrins and growth factor receptors. We report here that inhibition of FAK kinase activity by VS-4718 or VS-6063 preferentially targets CSCs, as demonstrated by a panel of orthogonal CSC assays in cell line models and surgically resected primary breast tumor specimens cultured ex vivo. Oral administration of VS-4718 or VS-6063 to mice bearing xenograft models of triple-negative breast cancer (TNBC) significantly reduced the proportion of CSCs in the tumors, as evidenced by a reduced tumor-initiating capability upon re-implantation in limiting dilutions of cells prepared from these tumors. In contrast, the cytotoxic chemotherapeutic agents, paclitaxel and carboplatin, enriched for CSCs, consistent with previous reports that these cytotoxic agents preferentially target non-CSCs. Importantly, VS-4718 and VS-6063 attenuated the chemotherapy-induced enrichment of CSCs in vitro and delayed tumor regrowth following cessation of chemotherapy. An intriguing crosstalk between FAK and the Wnt/ß-catenin pathway was revealed wherein FAK inhibition blocks ß-catenin activation by reducing tyrosine 654 phosphorylation of ß-catenin. Furthermore, a constitutively active mutant form of ß-catenin reversed the preferential targeting of CSCs by FAK inhibition, suggesting that this targeting is mediated, at least in part, through attenuating ß-catenin activation. The preferential targeting of cancer stem cells by FAK inhibitors provides a rationale for the clinical development of FAK inhibitors aimed to increase durable responses for cancer patients.

7.
Invest Ophthalmol Vis Sci ; 58(11): 4593-4600, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28892827

RESUMEN

Purpose: The purpose of this study was to evaluate mechanisms controlling secretory IgA (SIgA) production, thereby ensuring maintenance of ocular surface health. Methods: To determine whether the presence of specific gut commensal species regulates SIgA levels and IgA transcripts in the eye-associated lymphoid tissues (EALT), specific-pathogen-free (SPF) Swiss Webster (SW) mice were treated with antibiotic cocktails, germ-free (GF) SW mice were reconstituted with diverse commensal gut microbiota, or monocolonized with gut-specific commensals. Proteomic profiling and quantitative real-time polymerase chain reaction (qRT-PCR) were used to quantify SIgA and IgA levels. 16S rDNA sequencing was carried out to characterize commensal microbiota. Results: Commensal presence regulated ocular surface SIgA levels and mRNA IgA transcripts in EALT. Oral antibiotic cocktail intake significantly reduced gut commensal presence, while maintaining ocular surface commensal levels reduced SIgA and IgA transcripts in EALT. Analysis of gut microbial communities revealed that SPF SW mice carried abundant Bacteroides organisms when compared to SPF C57BL6/N mice, with B. acidifaciens being the most prominent species in SPF SW mice. Monocolonization of GF SW mice with B. acidifaciens, a strict gut anaerobe, resulted in significant increase of IgA transcripts in the EALT, implying generation of B-cell memory. Conclusions: These data illustrated a "gut-eye" axis of immune regulation. Exposure of the host to gut commensal species may serve as a priming signal to generate B-cell repertoires at sites different from the gut, such as EALT, thereby ensuring broad protection.


Asunto(s)
Conjuntiva/inmunología , Inmunoglobulina A Secretora/inmunología , Microbiota/fisiología , Membrana Mucosa/inmunología , Lágrimas/metabolismo , Animales , Bacteroides/fisiología , ADN Ribosómico/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Microbioma Gastrointestinal/fisiología , Inmunoglobulina A/inmunología , Inmunoglobulina A Secretora/genética , Tejido Linfoide/inmunología , Ratones , Ratones Endogámicos C57BL , Proteómica , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos , Simbiosis , Espectrometría de Masas en Tándem
8.
Cancer Res ; 75(2): 446-55, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25432176

RESUMEN

Cancer stem cells (CSC) have been implicated in disease recurrence, metastasis, and therapeutic resistance, but effective targeting strategies for these cells are still wanting. VS-5584 is a potent and selective dual inhibitor of mTORC1/2 and class I PI 3-kinases. Here, we report that VS-5584 is up to 30-fold more potent in inhibiting the proliferation and survival of CSC compared with non-CSC in solid tumor cell populations. VS-5584 preferentially diminished CSC levels in multiple mouse xenograft models of human cancer, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Likewise, VS-5584 treatment ex vivo preferentially reduced CSC in surgically resected breast and ovarian patient tumors. In contrast, chemotherapeutics such as paclitaxel and cisplatin were less effective in targeting CSC than bulk tumor cells. Mechanistic investigations revealed that preferential targeting of CSC required inhibition of multiple components of the PI3K-mTOR pathway: coordinate RNAi-mediated silencing of PI3Kα, PI3Kß, and mTOR phenocopied the effect of VS-5584, exhibiting the strongest preferential targeting of CSC, while silencing of individual PI3K isoforms or mTOR failed to replicate the effect of VS-5584. Consistent with CSC ablation, VS-5584 delayed tumor regrowth following chemotherapy in xenograft models of small-cell lung cancer. Taken together, the preferential targeting of CSC prompts a new paradigm for clinical testing of VS-5584: clinical trials designed with CSC-directed endpoints may facilitate demonstration of the therapeutic benefit of VS-5584. We suggest that combining VS-5584 with classic chemotherapy that debulks tumors may engender a more effective strategy to achieve durable remissions in patients with cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Morfolinas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Distribución Aleatoria , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Sci Transl Med ; 6(237): 237ra68, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24848258

RESUMEN

The goal of targeted therapy is to match a selective drug with a genetic lesion that predicts for drug sensitivity. In a diverse panel of cancer cell lines, we found that the cells most sensitive to focal adhesion kinase (FAK) inhibition lack expression of the neurofibromatosis type 2 (NF2) tumor suppressor gene product, Merlin. Merlin expression is often lost in malignant pleural mesothelioma (MPM), an asbestos-induced aggressive cancer with limited treatment options. Our data demonstrate that low Merlin expression predicts for increased sensitivity of MPM cells to a FAK inhibitor, VS-4718, in vitro and in tumor xenograft models. Disruption of MPM cell-cell or cell-extracellular matrix (ECM) contacts with blocking antibodies suggests that weak cell-cell adhesions in Merlin-negative MPM cells underlie their greater dependence on cell-ECM-induced FAK signaling. This provides one explanation of why Merlin-negative cells are vulnerable to FAK inhibitor treatment. Furthermore, we validated aldehyde dehydrogenase as a marker of cancer stem cells (CSCs) in MPM, a cell population thought to mediate tumor relapse after chemotherapy. Whereas pemetrexed and cisplatin, standard-of-care agents for MPM, enrich for CSCs, FAK inhibitor treatment preferentially eliminates these cells. These preclinical results provide the rationale for a clinical trial in MPM patients using a FAK inhibitor as a single agent after first-line chemotherapy. With this design, the FAK inhibitor could potentially induce a more durable clinical response through reduction of CSCs along with a strong antitumor effect. Furthermore, our data suggest that patients with Merlin-negative tumors may especially benefit from FAK inhibitor treatment.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Neurofibromina 2/deficiencia , Inhibidores de Proteínas Quinasas/farmacología , Aldehído Deshidrogenasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/enzimología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno , Ratones , Terapia Molecular Dirigida , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Neurofibromina 2/genética , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Biol Chem ; 289(15): 10865-10875, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567333

RESUMEN

IRAK4 is a central kinase in innate immunity, but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown, and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for full catalytic activity of the kinase. Phosphorylation of any two of the residues Thr-342, Thr-345, and Ser-346 is required for full activity, and the death domain regulates the activation of IRAK4. Using antibodies against activated IRAK4, we demonstrate that IRAK4 becomes phosphorylated in human cells following stimulation by IL-1R and Toll-like receptor agonists, which can be blocked pharmacologically by a dual inhibitor of IRAK4 and IRAK1. Interestingly, in dermal fibroblasts, although complete inhibition of IRAK4 kinase activity does not inhibit IL-1-induced IL-6 production, NF-κB, or MAPK activation, there is complete ablation of these processes in IRAK4-deficient cells. In contrast, the inhibition of IRAK kinase activity in primary human monocytes reduces R848-induced IL-6 production with minimal effect on NF-κB or MAPK activation. Taken together, these studies define the mechanism of IRAK4 activation and highlight the differential role of IRAK4 kinase activity in different human cell types as well as the distinct roles IRAK4 scaffolding and kinase functions play.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Secuencia de Aminoácidos , Animales , Sistema Libre de Células , Clonación Molecular , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Insectos , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Monocitos/citología , Mutación , FN-kappa B/metabolismo , Sistemas de Lectura Abierta , Fosforilación , Unión Proteica , Conformación Proteica , Receptores de Interleucina-1/agonistas , Transducción de Señal , Piel/metabolismo , Receptores Toll-Like/agonistas
11.
Nat Chem Biol ; 9(5): 319-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524983

RESUMEN

In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Zinc/química , Línea Celular Tumoral , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Histona Desacetilasas/genética , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Oxadiazoles/química , Relación Estructura-Actividad , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...