Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 98, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386110

RESUMEN

In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.


Asunto(s)
Neoplasias , Progesterona , Progesterona/farmacología , Receptores de Progesterona/genética , Receptor alfa de Estrógeno , Progestinas/farmacología , Ligandos , Membrana Celular
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139316

RESUMEN

Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Apoptosis/genética
3.
Front Endocrinol (Lausanne) ; 13: 888802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034422

RESUMEN

Background: Breast cancer cells enter into the cell cycle following progestin exposure by the activation of signalling cascades involving a plethora of enzymes, transcription factors and co-factors that transmit the external signal from the cell membrane to chromatin, ultimately leading to a change of the gene expression program. Although many of the events within the signalling network have been described in isolation, how they globally team up to generate the final cell response is unclear. Methods: In this study we used antibody microarrays and phosphoproteomics to reveal a dynamic global signalling map that reveals new key regulated proteins and phosphor-sites and links between previously known and novel pathways. T47D breast cancer cells were used, and phospho-sites and pathways highlighted were validated using specific antibodies and phenotypic assays. Bioinformatic analysis revealed an enrichment in novel signalling pathways, a coordinated response between cellular compartments and protein complexes. Results: Detailed analysis of the data revealed intriguing changes in protein complexes involved in nuclear structure, epithelial to mesenchyme transition (EMT), cell adhesion, as well as transcription factors previously not associated with breast cancer cell proliferation. Pathway analysis confirmed the key role of the MAPK signalling cascade following progesterone and additional hormone regulated phospho-sites were identified. Full network analysis shows the activation of new signalling pathways previously not associated with progesterone signalling in T47D breast cancer cells such as ERBB and TRK. As different post-translational modifications can mediate complex crosstalk mechanisms and massive PARylation is also rapidly induced by progestins, we provide details of important chromatin regulatory complexes containing both phosphorylated and PARylated proteins. Conclusions: This study contributes an important resource for the scientific community, as it identifies novel players and connections meaningful for breast cancer cell biology and potentially relevant for cancer management.


Asunto(s)
Neoplasias de la Mama , Progesterona , Cromatina , Femenino , Humanos , Fosforilación , Progestinas , Receptores de Progesterona , Factores de Transcripción
4.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668737

RESUMEN

Despite global research efforts, breast cancer remains the leading cause of cancer death in women worldwide. The majority of these deaths are due to metastasis occurring years after the initial treatment of the primary tumor and occurs at a higher frequency in hormone receptor-positive (Estrogen and Progesterone; HR+) breast cancers. We have previously described the role of NUDT5 (Nudix-linked to moiety X-5) in HR+ breast cancer progression, specifically with regards to the growth of breast cancer stem cells (BCSCs). BCSCs are known to be the initiators of epithelial-to-mesenchyme transition (EMT), metastatic colonization, and growth. Therefore, a greater understanding of the proteins and signaling pathways involved in the metastatic process may open the door for therapeutic opportunities. In this review, we discuss the role of NUDT5 and other members of the NUDT family of enzymes in breast and other cancer types. We highlight the use of global omics data based on our recent phosphoproteomic analysis of progestin signaling pathways in breast cancer cells and how this experimental approach provides insight into novel crosstalk mechanisms for stratification and drug discovery projects aiming to treat patients with aggressive cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Enzimas Reparadoras del ADN/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Descubrimiento de Drogas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal
5.
J Mol Endocrinol ; 65(1): T65-T79, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485671

RESUMEN

Gene regulation by steroid hormones has been at the forefront in elucidating the intricacies of transcriptional regulation in eukaryotes ever since the discovery by Karlson and Clever that the insect steroid hormone ecdysone induces chromatin puffs in giant chromosomes. After the successful cloning of the hormone receptors toward the end of the past century, detailed mechanistic insight emerged in some model systems, in particular the MMTV provirus. With the arrival of next generation DNA sequencing and the omics techniques, we have gained even further insight into the global cellular response to steroid hormones that in the past decades also extended to the function of the 3D genome topology. More recently, advances in high resolution microcopy, single cell genomics and the new vision of liquid-liquid phase transitions in the context of nuclear space bring us closer than ever to unravelling the logic of gene regulation and its complex integration of global cellular signaling networks. Using the function of progesterone and its cellular receptor in breast cancer cells, we will briefly summarize the history and describe the present extent of our knowledge on how regulatory proteins deal with the chromatin structure to gain access to DNA sequences and interpret the genomic instructions that enable cells to respond selectively to external signals by reshaping their gene regulatory networks.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Genoma Humano , Receptores de Progesterona/metabolismo , Ensamble y Desensamble de Cromatina/genética , Femenino , Humanos , Transición de Fase , Regiones Promotoras Genéticas/genética
7.
Cancers (Basel) ; 11(9)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510016

RESUMEN

The growth of cancer cells as oncospheres in three-dimensional (3D) culture provides a robust cell model for understanding cancer progression, as well as for early drug discovery and validation. We have previously described a novel pathway in breast cancer cells, whereby ADP (Adenosine diphosphate)-ribose derived from hydrolysis of poly (ADP-Ribose) and pyrophosphate (PPi) are converted to ATP, catalysed by the enzyme NUDT5 (nucleotide diphosphate hydrolase type 5). Overexpression of the NUDT5 gene in breast and other cancer types is associated with poor prognosis, increased risk of recurrence and metastasis. In order to understand the role of NUDT5 in cancer cell growth, we performed phenotypic and global expression analysis in breast cancer cells grown as oncospheres. Comparison of two-dimensional (2D) versus 3D cancer cell cultures from different tissues of origin suggest that NUDT5 increases the aggressiveness of the disease via the modulation of several key driver genes, including ubiquitin specific peptidase 22 (USP22), RAB35B, focadhesin (FOCAD) and prostagladin E synthase (PTGES). NUDT5 functions as a master regulator of key oncogenic pathways and of genes involved in cell adhesion, cancer stem cell (CSC) maintenance and epithelial to mesenchyme transition (EMT). Inhibiting the enzymatic activities of NUDT5 prevents oncosphere formation and precludes the activation of cancer driver genes. These findings highlight NUDT5 as an upstream regulator of tumour drivers and may provide a biomarker for cancer stratification, as well as a novel target for drug discovery for combinatorial drug regimens for the treatment of aggressive cancer types and metastasis.

8.
Trends Biochem Sci ; 44(7): 565-574, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31072688

RESUMEN

Misregulation of the processes controlling eukaryotic gene expression can result in disease. Gene expression is influenced by the surrounding chromatin; hence the nuclear environment is also of vital importance. Recently, understanding of chromatin hierarchical folding has increased together with the discovery of membrane-less organelles which are distinct, dynamic liquid droplets that merge and expand within the nucleus. These 'sieve'-like regions may compartmentalize and separate functionally distinct regions of chromatin. This article aims to discuss recent studies on nuclear phase within the context of poly(ADP-ribose), ATP, and Mg2+ levels, and we propose a combinatorial complex role for these molecules in phase separation and genome regulation. We also discuss the implications of this process for gene regulation and discuss possible strategies to test this.


Asunto(s)
Adenosina Trifosfato/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma Humano , Magnesio/metabolismo , Humanos
9.
Mol Cell ; 73(1): 84-96.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472187

RESUMEN

The post-translational modification of key residues at the C-terminal domain of RNA polymerase II (RNAP2-CTD) coordinates transcription, splicing, and RNA processing by modulating its capacity to act as a landing platform for a variety of protein complexes. Here, we identify a new modification at the CTD, the deimination of arginine and its conversion to citrulline by peptidyl arginine deiminase 2 (PADI2), an enzyme that has been associated with several diseases, including cancer. We show that, among PADI family members, only PADI2 citrullinates R1810 (Cit1810) at repeat 31 of the CTD. Depletion of PADI2 or loss of R1810 results in accumulation of RNAP2 at transcription start sites, reduced gene expression, and inhibition of cell proliferation. Cit1810 is needed for interaction with the P-TEFb (positive transcription elongation factor b) kinase complex and for its recruitment to chromatin. In this way, CTD-Cit1810 favors RNAP2 pause release and efficient transcription in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/enzimología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Arginina , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Citrulinación , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Arginina Deiminasa Proteína-Tipo 2 , Desiminasas de la Arginina Proteica/genética , Desiminasas de la Arginina Proteica/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/genética , Transducción de Señal
10.
Genome Res ; 29(1): 29-39, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552103

RESUMEN

In breast cancer cells, some topologically associating domains (TADs) behave as hormonal gene regulation units, within which gene transcription is coordinately regulated in response to steroid hormones. Here we further describe that responsive TADs contain 20- to 100-kb-long clusters of intermingled estrogen receptor (ESR1) and progesterone receptor (PGR) binding sites, hereafter called hormone-control regions (HCRs). In T47D cells, we identified more than 200 HCRs, which are frequently bound by unliganded ESR1 and PGR. These HCRs establish steady long-distance inter-TAD interactions between them and organize characteristic looping structures with promoters in their TADs even in the absence of hormones in ESR1+-PGR+ cells. This organization is dependent on the expression of the receptors and is further dynamically modulated in response to steroid hormones. HCRs function as platforms that integrate different signals, resulting in some cases in opposite transcriptional responses to estrogens or progestins. Altogether, these results suggest that steroid hormone receptors act not only as hormone-regulated sequence-specific transcription factors but also as local and global genome organizers.


Asunto(s)
Receptor alfa de Estrógeno/biosíntesis , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Progesterona/farmacología , Receptores de Progesterona/biosíntesis , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Humanos , Células MCF-7 , Receptores de Progesterona/genética
11.
Cancers (Basel) ; 10(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301163

RESUMEN

Breast cancer prognosis and response to endocrine therapy strongly depends on the expression of the estrogen and progesterone receptors (ER and PR, respectively). Although much is known about ERα gene (ESR1) regulation after hormonal stimulation, how it is regulated in hormone-free condition is not fully understood. We used ER-/PR-positive breast cancer cells to investigate the role of PR in ESR1 regulation in the absence of hormones. We show that PR binds to the low-methylated ESR1 promoter and maintains both gene expression and DNA methylation of the ESR1 locus in hormone-deprived breast cancer cells. Depletion of PR reduces ESR1 expression, with a concomitant increase in gene promoter methylation. The high amount of methylation in the ESR1 promoter of PR-depleted cells persists after the stable re-expression of PR and inhibits PR binding to this genomic region. As a consequence, the rescue of PR expression in PR-depleted cells is insufficient to restore ESR1 expression. Consistently, DNA methylation impedes PR binding to consensus progesterone responsive elements. These findings contribute to understanding the complex crosstalk between PR and ER and suggest that the analysis of ESR1 promoter methylation in breast cancer cells can help to design more appropriate targeted therapies for breast cancer patients.

12.
Nat Commun ; 9(1): 250, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343827

RESUMEN

With a diverse network of substrates, NUDIX hydrolases have emerged as a key family of nucleotide-metabolizing enzymes. NUDT5 (also called NUDIX5) has been implicated in ADP-ribose and 8-oxo-guanine metabolism and was recently identified as a rheostat of hormone-dependent gene regulation and proliferation in breast cancer cells. Here, we further elucidate the physiological relevance of known NUDT5 substrates and underscore the biological requirement for NUDT5 in gene regulation and proliferation of breast cancer cells. We confirm the involvement of NUDT5 in ADP-ribose metabolism and dissociate a relationship to oxidized nucleotide sanitation. Furthermore, we identify potent NUDT5 inhibitors, which are optimized to promote maximal NUDT5 cellular target engagement by CETSA. Lead compound, TH5427, blocks progestin-dependent, PAR-derived nuclear ATP synthesis and subsequent chromatin remodeling, gene regulation and proliferation in breast cancer cells. We herein present TH5427 as a promising, targeted inhibitor that can be used to further study NUDT5 activity and ADP-ribose metabolism.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Progestinas/metabolismo , Pirofosfatasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Adenosina Difosfato Ribosa/metabolismo , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Femenino , Células HL-60 , Humanos , Estructura Molecular , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Interferencia de ARN , Especificidad por Sustrato
13.
Nucleus ; 7(6): 532-539, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27893319

RESUMEN

The packaging of genetic information in form of chromatin within the nucleus provides cells with the ability to store and protect massive amounts of information within a compact space. Storing information within chromatin allows selective access to specific DNA sequences by regulating the various levels of chromatin structure from nucleosomes, to chromatin fibers, loops and topological associating domains (TADs) using mechanisms that are being progressively unravelled. However, a relatively unexplored aspect is the energetic cost of changing the chromatin configuration to gain access to DNA information. Among the enzymes responsible for regulating chromatin access are the ATP-dependent chromatin remodellers that act on nucleosomes and use the energy of ATP hydrolysis to make chromatin DNA more accessible. It is assumed that the ATP used by these enzymes is provided by the mitochondria or by cytoplasmic glycolysis. We hypothesize that though this may be the case for cells in steady state, when gene expression has to be globally reprogramed in response to externals signals or stress conditions, the cell directs energy production to the cell nucleus, where rapid chromatin reorganization is needed for cell survival. We discovered that in response to hormones a nuclear ATP synthesis mechanism is activated that utilizing ADP-ribose and pyrophosphate as substrates. 1 This extra view aims to put this process within its historical context, to describe the enzymatic steps in detail, to propose a possible structure of the ATP synthesising enzyme, and to shed light on how this may link to other reactions within the cell providing a perspective for future lines of investigation.


Asunto(s)
Cromatina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Núcleo Celular/metabolismo , Humanos
14.
Science ; 352(6290): 1221-5, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27257257

RESUMEN

Key nuclear processes in eukaryotes, including DNA replication, repair, and gene regulation, require extensive chromatin remodeling catalyzed by energy-consuming enzymes. It remains unclear how the ATP demands of such processes are met in response to rapid stimuli. We analyzed this question in the context of the massive gene regulation changes induced by progestins in breast cancer cells and found that ATP is generated in the cell nucleus via the hydrolysis of poly(ADP-ribose) to ADP-ribose. In the presence of pyrophosphate, ADP-ribose is used by the pyrophosphatase NUDIX5 to generate nuclear ATP. The nuclear source of ATP is essential for hormone-induced chromatin remodeling, transcriptional regulation, and cell proliferation.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Adenosina Trifosfato/biosíntesis , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Progestinas/metabolismo , Pirofosfatasas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Núcleo Celular/efectos de los fármacos , Proliferación Celular , Cristalografía por Rayos X , Difosfatos/metabolismo , Metabolismo Energético , Femenino , Regulación de la Expresión Génica , Humanos , Hidrólisis , Células MCF-7 , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Progestinas/farmacología , Multimerización de Proteína , Pirofosfatasas/química , Pirofosfatasas/genética
15.
Genes Dev ; 28(19): 2151-62, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274727

RESUMEN

The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼ 2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as "regulons" to enable spatially proximal genes to be coordinately transcribed in response to hormones.


Asunto(s)
Cromatina/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Progestinas/farmacología , Línea Celular Tumoral , Cromatina/química , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Hormonas/farmacología , Humanos
17.
Genes Dev ; 26(17): 1972-83, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22948662

RESUMEN

Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Modelos Moleculares , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Progestinas/farmacología , Estructura Terciaria de Proteína
18.
Biochem J ; 400(3): 573-82, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16984230

RESUMEN

TopBP1 has eight BRCT [BRCA1 (breast-cancer susceptibility gene 1) C-terminus] domains and is involved in initiating DNA replication, and DNA damage checkpoint signalling and repair. Several BRCT-domain-containing proteins involved in mediating DNA repair have transcriptional regulatory domains, and as demonstrated for BRCA1 these regulatory domains are important in mediating the functions of these proteins. These transcriptional regulatory processes involve modification of chromatin, and recent evidence has clearly demonstrated that the ability to modify chromatin plays an important role in regulating DNA damage signalling and repair. Here we report the identification of a TopBP1 transcriptional activation domain that is rich in hydrophobic residues, interspersed with acidic amino acids, characteristics that are typical of transcriptional activation domains identified previously. Two adjacent repressor domains encoded by BRCT2 and BRCT5 silence this activator and experiments suggest that these repressors actively recruit repressor complexes. Both the activator and BRCT2 repressor domains function in yeast. The present study identifies several chromatin modification domains encoded by TopBP1, and the implications of these findings are discussed in the context of the DNA damage response and the understanding of TopBP1 function.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Transcripción Genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteínas Portadoras/genética , Línea Celular , Daño del ADN , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN , Silenciador del Gen , Humanos , Proteínas Nucleares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA