Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 295: 110148, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851152

RESUMEN

Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-ß and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-ß promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-ß promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNß induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.


Asunto(s)
Factor 3 Regulador del Interferón , Interferón beta , Interferón beta/genética , Interferón beta/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Animales , Humanos , Línea Celular , Transducción de Señal/efectos de los fármacos , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Inmunidad Innata , Bovinos , Búfalos/virología , FN-kappa B/metabolismo
2.
Foods ; 12(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36766065

RESUMEN

More than half of the people on Earth get their calories, proteins, and minerals from rice grains. Staple increases in the quantity and quality of rice grains are key to ending hunger and malnutrition. Rice production, however, is vulnerable to climate change, and the climate on Earth is becoming more fluctuating with the atmospheric change induced by human activities. As a result, the impacts of climate change on rice grain (ICCRG) have sparked widespread concern. In order to reveal the development and the trend in the study on the ICCRG, a bibliometric analysis was conducted. The results showed that both the model simulations and the field experiment-based observations, as reflected by APSIM (the Agricultural Production Systems sIMulator) and free-air carbon dioxide (CO2) enrichment, are of concern to researchers worldwide, especially in China, India, the United States, and Japan. Different types of warming include short-term, nighttime, soil and water, and canopy, and their interactions with other climate factors, such as CO2, or agronomic factors, such as nitrogen level, are also of concern to researchers. Spatiotemporal variations in changing weather and regional adaptations from developed and developing countries are challenging the evaluation of ICCRG from an economic perspective. In order to improve the efficacy of breeding adaptable cultivars and developing agronomic management, interdisciplinary studies integrating molecular biology, plant physiology, agronomy, food chemistry, ecology, and socioeconomics are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...