Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134296, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643574

RESUMEN

The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Aguas Residuales , Animales , Aguas Residuales/virología , Porcinos , Anaerobiosis , Virus ARN/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Biomasa , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos
2.
Front Microbiol ; 15: 1348405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389533

RESUMEN

Several animal models have been used to assist the development of vaccines and therapeutics since the COVID-19 outbreak. Due to the lack of binding affinity of mouse angiotensin-converting enzyme II (ACE2) to the S protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), increasing the susceptibility of mice to SARS-CoV-2 infection was considered in several ways. Here, we generated a COVID-19 mouse model expressing human ACE2 (hACE2) under the control of the CAG promoter. Overexpression of hACE2 did not pose a significant effect on weight growth. After SARS-CoV-2 inoculation, mice showed obvious viral replication and production of inflammation within 7 days, with a gradual decrease in body weight until death. Virological testing found that the virus can replicate in the respiratory system, small intestine, and brain. Additionally, this mouse model was applied to compare two antibody drug candidates, the anti-RBD antibody (MW06) and the mouse CD24-conjugated anti-RBD antibody (mCD24-MW06). Differences in antiviral effects between these two antibodies can be demonstrated in this mouse model when a challenge dose that invalidates the anti-RBD antibody treatment was used. This study provided a new mouse model for studying SARS-CoV-2 pathogenesis and evaluating potential interventions.

3.
Front Cell Infect Microbiol ; 13: 1351814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304460

RESUMEN

Introduction: Respiratory viral infection (RVI) is of very concern after the outbreak of COVID-19, especially in pediatric departments. Learning pathogen spectrum of RVI in children previous the epidemic of COVID-19 could provide another perspective for understanding RVI under current situation and help to prepare for the post COVID-19 infection control. Methods: A nucleic acid sequence-based amplification (NASBA) assay, with 19 pairs of primers targeting various respiratory viruses, was used for multi-pathogen screening of viral infections in children presenting influenza-like illness (ILI) symptoms. Children with ILI at the outpatient department of Beijing Tsinghua Changgung Hospital during the influenza epidemic from 12/2018 to 01/2019 were included. Throat swabs were obtained for both the influenza rapid diagnostic test (IRDT) based on the colloidal gold immunochromatographic assay and the NASBA assay, targeting various respiratory viruses with an integrated chip technology. Results and discussion: Of 519 patients, 430 (82.9%) were positive in the NASBA assay. The predominant viral pathogens were influenza A H1N1 pdm1/2009 (pH1N1) (48.4%) and influenza A (H3N2) (18.1%), followed by human metapneumovirus (hMPV) (8.8%) and respiratory syncytial virus (RSV) (6.1%). Of the 320 cases identified with influenza A by NASBA, only 128 (40.0%) were positive in the IRDT. The IRDT missed pH1N1 significantly more frequently than A (H3N2) (P<0.01). Influenza A pH1N1 and A (H3N2) were the major pathogens in <6 years and 6-15 years old individuals respectively (P<0.05). In summary, influenza viruses were the major pathogens in children with ILI during the 2018-2019 winter influenza epidemic, while hMPV and RSV were non-negligible. The coexistence of multiple pathogen leading to respiratory infections is the normalcy in winter ILI cases.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virosis , Niño , Humanos , Lactante , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología
4.
Water Res ; 219: 118596, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598470

RESUMEN

Effective removal of human pathogenic viruses is an indispensable yet rarely studied aspect for sustainable treatment of domestic wastewater by anaerobic membrane bioreactor (AnMBR). In this study, the interface behaviors and removal mechanisms of norovirus genogroup I (GI), genogroup II (GII), and rotavirus A from domestic wastewater was systematically investigated in a one-stage AnMBR. On average, norovirus GI, GII and rotavirus were reduced by 4.64, 5.00, and 2.31 logs, respectively. Viruses tended to be transferred to larger-sized suspended solids from sewage influent to the mixed liquor, and the weight-specific concentration of the virus in >100 µm particles of the mixed liquor was significantly higher than that of sewage, indicating a particle scale-dependent affinity with the virus. In-series membrane filtration test showed the main contribution of the membrane retention, which was dominated by the bio-cake layer and the pristine membrane, while the membrane and associated pore foulants can retain viruses in a filtration resistance-efficient way. An unsteady-state mass balance model revealed that free viruses in the bulk liquid of AnMBR were minimally attached to the cake layer but mainly retained by the membrane and pore foulants (>99%). In addition, despite the small virus decay rates in the mixed liquor, the associated contribution increased with run time due to the prolonged sludge retention time. These insights into virus behaviors and removal mechanisms may provide novel regulation strategies for enhanced virus removal by AnMBR.


Asunto(s)
Norovirus , Virus , Anaerobiosis , Reactores Biológicos , Humanos , Membranas Artificiales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
5.
Water Res ; 211: 118055, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042072

RESUMEN

Anaerobic membrane bioreactor (AnMBR) is a low-energy and promising solution for sewage treatment. During the treatment, the fouled membrane of AnMBR is recognized as an important barrier against pathogenic viruses. Here, the role of membrane fouling of an AnMBR at room temperature in the virus removal was investigated using MS2 bacteriophage as a virus surrogate. Results revealed that the virus removal efficiency of AnMBR was in the range of 0.2 to 3.6 logs, gradually increasing with the course of AnMBR operation. Virus removal efficiency was found to be significantly correlated with transmembrane pressure (R2=0.92, p<0.01), especially in the rapid fouling stage, indicating that membrane fouling was the key factor in the virus removal. The proportion of virus decreased from 52.03% to 15.04% in the membrane foulants when membrane fouling was aggravating rapidly, yet increased from 0.74% to 21.52% in the mixed liquor. Meanwhile, the permeate flux dramatically dropped. These imply that the primary rejection mechanism of virus by membrane in the slow fouling stage is the virus adsorption onto membrane, while the sieving effect is the main reason in the rapid fouling stage. Ex-situ virus rejection test unveiled that the cake layer was the main contributor to the overall virus rejection, while the greatest resistance-specific virus rejection was provided by the organic pore blocking. This paper provides operation strategies to balance enhanced virus removal and high permeate flux by regulating the membrane fouling process.


Asunto(s)
Aguas del Alcantarillado , Virus , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Environ Sci Technol ; 54(2): 921-929, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31800232

RESUMEN

Human contact with fecally contaminated waters often raises public health concern. The infection potential closely relates to the fecal source type and the aging persistence of waterborne pathogens. In this study, the health risk of contracting gastroenteritis from exposure to aging fecal contamination was predicted using source-associated markers. Microbial decay characteristics in typical summer seawater were incorporated into a pathogen dose estimation model for a constant fecal input. Results show that the median illness probability commensurate with the health benchmark of 36/1000 corresponded to the marker concentrations of ∼7.8, ∼6.6, ∼3.7, and ∼3.5 log10 gene copies/100 mL for seagulls, cattle, raw sewage, and treated effluent, respectively. The error in risk estimates due to neglecting microbial decay was linearly correlated to the decay differences between markers and pathogens. Specifically, the health risk associated with nonhuman sources, which was primarily contributed by bacterial and parasitic pathogens, can be substantially overestimated, while that for virus-dominated human sources was insignificantly affected by the differential decay. Additionally, seagulls dominated the Enterococcus concentration in waters with a mixture of the above-mentioned sources, although they posed limited health risk. This study provides an approach to understanding the influence of fecal aging on health risk estimation.


Asunto(s)
Gastroenteritis , Microbiología del Agua , Envejecimiento , Animales , Bovinos , Monitoreo del Ambiente , Heces , Humanos , Natación
7.
Environ Int ; 130: 104703, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31295713

RESUMEN

The use of microbial source tracking (MST) marker genes has grown in recent years due to the need to attribute point and non-point fecal contamination to specific sources. Quantitative microbial risk assessment (QMRA) is a modeling approach used to estimate health risks from exposure to feces-contaminated water and associated pathogens. A combination of these approaches [quantitative MST (qMST) and QMRA] can provide additional pathogen-related information for prioritizing and addressing health risks, compared to reliance on conventional fecal indicator bacteria (FIB). To inform expansion of this approach, a review of published qMST-QMRA studies was conducted to summarize the state of the science and to identify research needs. The reviewed studies primarily aimed to identify what levels of MST marker genes in hypothetical recreational waterbodies would exceed the United States Environmental Protection Agency (USEPA) risk benchmarks for primary contact recreators. The QMRA models calculated relationships between MST marker gene(s) and reference pathogens based on published data in the literature. The development of a robust, accurate relationship was identified as an urgent research gap for qMST-QMRA. This metric requires additional knowledge to quantify the relationship between MST marker genes and the degree of variability in decay of pathogens as a dynamic function of environmental conditions and combinations of fecal sources at multiple spatial and temporal scales. Improved characterization of host shedding rates of host-associated microorganisms (i.e., MST marker genes), as well as fate and transport of these microorganisms and their nucleic acids, would facilitate expansion of this approach to other exposure pathways. Incorporation of information regarding the recovery efficiency, and host-specificity of MST marker genes into QMRA model parameters, and the sensitivity analysis, would greatly improve risk management and site-specific water monitoring criteria.


Asunto(s)
Bacterias , Monitoreo del Ambiente , Medición de Riesgo , Microbiología del Agua , Contaminación del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Humanos
8.
Water Res ; 117: 27-36, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28364653

RESUMEN

A microbial source tracking scheme was devised to differentiate fecal impacts of seagulls from that of human activities on an urban scenery lake in southern China, which is a major wintering ground for the black-headed seagull. Fecal contamination of seagulls was characterized by quantifying a novel genetic marker targeting Catellicoccus marimamalium. Quantification of this marker was combined with those of Escherichia coli, human-associated Bacteroidales, thermophilic Campylobacter and Helicobacter. Findings of a year-round study indicate that C. marimamalium levels correlated strongly, both spatially and temporally, with seagull migration. A steady increase in C. marimammalium concentrations was recorded between October 2014 and March 2015, which peaked at about 5-log copies/100 mL in January. However, a background level of about 2.1-log copies/100 mL was noticeable from April through September when seagulls were absent, probably due to other host sources or secondary habitats for C. marimammalium. Seagull migration also caused an apparent elevation of E. coli concentrations (86% and 60%, respectively for qPCR and culture method; p < 0.001) as well as Campylobacter and Helicobacter (66% and 68%, respectively; p < 0.001). Nonetheless, in contrast to the declining levels of E. coli, Campylobacter and Helicobacter, the human-specific Bacteroidales marginally increased in the seagull-absent season, indicating a limited influence of human activities, compared with seagull migration, on the seasonal variations in microbial water quality of the lake. The elevated levels of FIB, Campylobacter and Helicobacter along with C. marimammalium may imply human health risk of the lake water due to seasonal seagull migration, which requires further investigation for risk assessment.


Asunto(s)
Escherichia coli , Lagos , Animales , Charadriiformes , Enterococcaceae/genética , Heces , Humanos , Riesgo
9.
Arch Oral Biol ; 76: 55-60, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28126687

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the effect of static strain on bone marrow mesenchymal stem cell (BMMSC) migration and whether the p38/matrix metalloproteinase-2 (MMP-2) axis plays a role in induction of BMMSC migration under mechanical strain. DESIGN: Both in vivo and in vitro investigations were performed. Twelve adult male Sprague-Dawley rats were randomly divided into 2 groups (n=6 per group). Rats in the experimental group underwent right mandibular distraction osteogenesis, whereas rats in the control group were subjected to osteotomy in the mandible without distraction. Immunohistochemistry and immunofluorescence were performed to evaluate phospho-p38 (p-p38) and Nestin expression. BMMSCs were isolated from rat mandibles. BMMSCs in the experimental group were subjected to static mechanical strain for 2h, whereas those in the control group underwent no strain. The biological roles of static strain and the p38/MMP-2 axis in BMMSC migration were evaluated by Transwell assays and western blotting by inhibiting p38 phosphorylation. RESULTS: There were significantly more Nestin+ cells in the bone calluses of the experimental group than in those of the control group. In addition, Nestin+/p-p38+ cell numbers were significantly higher in the experimental group than in the control group, indicating that static strain activated p38 signaling in BMMSCs in vivo. In accordance with in vivo results, static strain in vitro stimulated phosphorylation of p38 in BMMSCs. Furthermore, expression of MMP-2 was elevated in BMMSCs under static strain compared with the control, and strain-induced MMP-2 expression was abolished by inhibition of p38 phosphorylation in BMMSCs. Moreover, Transwell assay results showed that static strain promoted BMMSC migration, which was abolished by inhibition of p38 phosphorylation. CONCLUSIONS: The present study demonstrated that static strain can promote the migration ability of BMMSCs via p38/MMP-2 signaling. To the best of our knowledge, this study is the first report demonstrating that the p38/MMP-2 axis governs BMMSC migration under static mechanical strain.


Asunto(s)
Movimiento Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Metaloproteinasa 2 de la Matriz/metabolismo , Células Madre/metabolismo , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Masculino , Mandíbula/citología , Mandíbula/metabolismo , Mecanotransducción Celular , Osteogénesis por Distracción , Osteotomía , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Estrés Mecánico
10.
Am J Transl Res ; 9(12): 5361-5374, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29312489

RESUMEN

Tumor-associated neutrophils (TANs) promote metastasis of multiple cancers, including oral squamous cell carcinoma (OSCC). Melatonin (Mel) reportedly exerts anti-metastatic effects on OSCC. However, little is known about the anti-OSCC effects of Mel involved in TANs. In this study, intensive infiltration of TANs was positively associated with advanced stage, lymphatic metastasis, and poor prognosis of OSCC. Moreover, Mel reduced the survival and migration of OSCC-associated neutrophils. Mechanistically, Mel suppressed the TAN release of C-X-C motif chemokine ligand 8, C-C motif chemokine ligand 2 (CCL2), CCL4, and matrix metalloproteinase-9 by blockage of p38 MAPK and Akt signaling. Mel-fostered TANs decreased the migration and invasion of OSCC cells and reduced tube formation in vitro. Additionally, Mel-hampered pro-motility and pro-angiogenesis effects of TANs were dependent on MMP-9 suppression in OSCC. Overall, The beneficial roles of melatonin in retarding OSCC metastasis were implicated with inhibition of TANs.

11.
Int J Med Sci ; 13(10): 783-789, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766028

RESUMEN

Distraction osteogenesis (DO) is a widely used self-tissue engineering. However, complications and discomfort due to the long treatment period are still the bottleneck of DO. Novel strategies to accelerate bone formation in DO are still needed. P38 is capable of regulating the osteogenic differentiation of both mesenchymal stem cells (MSCs) and osteoblasts, which are crucial to bone regeneration. However, it is not clear whether targeting p38 could regulate bony formation in DO. The purpose of the current work was to investigate the effects of local application of either p38 agonist anisomycin or p38 inhibitor SB203580 in a rat model of DO. 30 adult rats were randomly divided into 3 groups: (A) rats injected with DMSO served as the control group; (B) rats injected with p38 agonist anisomycin; (C) rats injected with p38 inhibitor SB203580. All the rats were subjected to mandibular distraction and the injection was performed daily during this period. The distracted mandibles were harvested on days 15 and 30 after surgery and subjected to the following analysis. Micro-computed tomography and histological evaluation results showed that local application of p38 agonist anisomycin increased new bone formation in DO, whereas p38 inhibitor SB203580 decreased it. Immunohistochemical analysis suggested that anisomycin promoted MSC recruitment in the distraction gap. In conclusion, this study demonstrated that local application of p38 agonist anisomycin can increase new bone formation during DO. This study may lead to a novel cell-based strategy for the improvement of bone regeneration.


Asunto(s)
Anisomicina/farmacología , Regeneración Ósea/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis por Distracción/métodos , Osteogénesis/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Masculino , Mandíbula/fisiología , Mandíbula/cirugía , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/fisiología , Piridinas/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
12.
Exp Cell Res ; 349(2): 214-220, 2016 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-27650061

RESUMEN

Mesenchymal stem cells (MSCs), which are physiologically maintained in vascular endothelial cell (VEC)-based niches, play a critical role in tissue regeneration. Our previous studies demonstrated that sympathetic denervation could promote MSC mobilization, thereby enhancing bone formation in distraction osteogenesis (DO), a self-tissue engineering for craniofacial and orthopeadic surgeries. However, the mechanisms on how sympathetic neurotransmitter norepinephrine (NE) regulates MSC migration are not well understood. Here we showed that deprivation of NE by transection of cervical sympathetic trunk (TCST) inhibited stromal cell-derived factor-1 (SDF-1) expression in the perivascular regions in rat mandibular DO. In vitro studies showed that NE treatment markedly upregulated p-JNK and therefore stimulated higher SDF-1 expression in VECs than control groups, and siRNA knockdown of the abrd3 gene abolished the NE-induced p-JNK activation. On the other hand, osteoblasts differentiated from MSCs showed an increase in SDF-1 secretion with lack of NE. Importantly, NE-treated VECs inhibited the MSC chemotaxis migration along the SDF-1 concentration gradient as demonstrated in a novel 3-chamber Transwell assay. Collectively, our study suggested that NE may increase the SDF-1 secretion by VECs via NE/abrd3/JNK pathway, thereby inhibiting the MSC chemotaxis migration from perivascular regions toward bone trabecular frontlines along the SDF-1 concentration gradient in bone regeneration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Quimiotaxis/efectos de los fármacos , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Norepinefrina/farmacología , Animales , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Quimiotaxis/fisiología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Norepinefrina/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Ratas Sprague-Dawley
13.
Am J Cancer Res ; 6(6): 1396-407, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27429852

RESUMEN

MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients.

14.
Oncol Rep ; 35(1): 427-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26530352

RESUMEN

Perineural invasion (PNI) is a striking biological behavior observed in salivary adenoid cystic carcinoma (SACC). The present study was designed to establish a co-culture model of SACC cells with Schwann cells (SCs), and then study epithelial-mesenchymal transition (EMT) and the Schwann-like differentiation of SACC cells to investigate the likely molecular mechanism of PNI. The co-culture models of SCs with tumor cells (SACC-83, SACC-LM and MEC-1) were established using a Transwell system. An elevated concentration of brain-derived neurotrophic factor (BDNF) was detected by ELISA assay in the co-cultured medium of the SACC-83 group and SACC-LM group rather than the MEC-1 group. The EMT process and Schwann-like differentiation in SACC-83 cells were analyzed by RT-PCR, western blotting, immunofluorescence, photography, and migration and perineural invasion assays. The SACC-83 cells under the co-culture condition with SCs changed to a mesenchymal morphology and had higher migration and invasion capabilities compared with the solely cultured SACC-83 cells, accompanied by the downregulation of E-cadherin and upregulation of N-cadherin and vimentin. The co-cultured SACC-83 cells also developed Schwann-like differentiation with increased expression of SC markers, S100A4 and GFAP. However, inhibition of tropomyosin-related kinase B (TrkB) by K252a markedly blocked these effects. Additionally, the expression and correlation of TrkB, E-cadherin and S100A4 were analyzed by immunohistochemistry in 187 primary SACC cases. The levels of TrkB and S100A4 expression were both positively associated with PNI in the SACC cases, while E-cadherin expression was negatively associated with PNI. Elevated expression of TrkB was significantly correlated with the downregulated expression of E-cadherin and the upregulated expression of S100A4 in the SACC cases. Our results suggest that SCs play a pivotal role in the PNI process by inducing the EMT process and the Schwann-like differentiation of SACC cells via the BDNF/TrkB axis. Interruption of the interreaction between SACC cells and SCs by targeting the BDNF/TrkB axis may be a potential strategy for anti-PNI therapy in SACC.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Carcinoma Adenoide Quístico/patología , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinasas/genética , Neoplasias de las Glándulas Salivales/patología , Células de Schwann/citología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica , Humanos , Glicoproteínas de Membrana/metabolismo , Invasividad Neoplásica , Proteínas Tirosina Quinasas/metabolismo , Receptor trkB , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Transducción de Señal
15.
Tumour Biol ; 37(2): 2161-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26349748

RESUMEN

Salivary adenoid cystic carcinoma (SACC) is the most frequent salivary gland malignancy with a unique characteristic that has been named perineural invasion (PNI). EMMPRIN is a transmembrane glycoprotein that has been demonstrated to promote PNI in SACC. Slug, one of the most effective promoters of the epithelial-to-mesenchymal transition (EMT), has been found to be associated with PNI in SACC. The aim of the present study was to investigate the roles and relationships of Slug, EMMPRIN, and E-cadherin in the PNI process of SACC. The expression levels of Slug, EMMPRIN, and E-cadherin in 115 primary SACC cases were statistically analyzed by immunohistochemistry. Simultaneously, the SACC cell line SACC-83 was transfected with recombinant plasmids of silencing Slug (si-Slug) and/or silencing EMMPRIN (si-EMMPRIN). The functions of Slug and EMMPRIN in the EMT and PNI process were assessed by reverse transcription PCR (RT-PCR), western blotting, morphological observation, scratch test, migration assay, and in vitro perineural invasion assay. The immunohistochemical statistics revealed that the high expression of Slug and EMMPRIN and the low expression of E-cadherin were significantly associated with the PNI of SACC (P < 0.05). Slug expression was significantly associated with EMMPRIN expression (P < 0.05), and Slug expression and EMMPRIN expression were both significantly negatively associated with E-cadherin expression (P < 0.05). Slug and EMMPRIN silencing both significantly inhibited EMMPRIN expression but promoted E-cadherin expression in SACC-83 cells (P < 0.01). The series of in vitro assays revealed that silencing of Slug, EMMPRIN, or both induced cell morphology changes and inhibited tumor cell motility and PNI ability in SACC-83 cells (P < 0.01). These results suggested that Slug silencing could inhibit the EMT process by downregulating EMMPRIN and then upregulating E-cadherin in the PNI process of SACC. The present study indicated that Slug and EMMPRIN are potential biomarkers and therapeutic targets for the diagnosis and treatment of PNI in human SACC.


Asunto(s)
Basigina/metabolismo , Carcinoma Adenoide Quístico/patología , Neoplasias de las Glándulas Salivales/patología , Factores de Transcripción de la Familia Snail/metabolismo , Adulto , Anciano , Antígenos CD , Western Blotting , Cadherinas/metabolismo , Carcinoma Adenoide Quístico/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de las Glándulas Salivales/metabolismo
16.
Oral Oncol ; 51(1): 64-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25456007

RESUMEN

BACKGROUND: The aim of the present study was to investigate whether the expression of Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tropomyosin-related kinase B (TrkB) is correlated with the clinical progression of salivary adenoid cystic carcinoma (SACC) and whether the BDNF/TrkB axis is associated with the induction of epithelial-mesenchymal transition (EMT) in SACC cells. METHOD: The expression of BDNF, TrkB, and E-cadherin (an EMT biomarker) in 76 primary SACC specimens and 20 normal salivary gland tissues was analyzed by immunohistochemistry. Additionally, the expression of BDNF, TrkB, and E-cadherin in SACC cell lines (SACC-83 and SACC-LM) was analyzed by RT-PCR and Western blotting. The biological role of the BDNF/TrkB axis in the EMT progression of SACC was evaluated after treatment with increased levels of BDNF and by inhibiting TrkB activity in SACC-83 cell line. The progression of SACC cells through EMT was assessed by RT-PCR, Western blotting, photography, migration and invasion assays. RESULTS: Elevated expression of TrkB (92.1%) and BDNF (89.5%), and downregulated expression of E-cadherin (47.4%) was found in SACC specimens, which was significantly correlated with the invasion and metastasis in SACC (P<0.05). The high expression of TrkB and the low expression of E-cadherin was significantly correlated with the poor prognosis of SACC patients (P<0.05). The expression of TrkB was inversely correlated with the expression of E-cadherin in both SACC cases and cell lines (P<0.05). Increasing BDNF levels after treatment with exogenous recombinant human BDNF (rhBDNF) at 100 ng/ml significantly promoted the activation of TrKB and the progression of EMT in SACC cells. While obstruction of TrkB by its inhibitor, k252a (100 nM), significantly inhibited the EMT progression of SACC cells. CONCLUSIONS: These results suggest that BDNF-mediated TrkB activation contributes to the EMT progression and the poor prognosis in SACC. The present study demonstrated that the BDNF/TrkB axis promotes the migration and invasion of SACC cells via EMT in vitro. Targeting the inactivation of the BDNF/TrkB axis may be a potential strategy for the treatment of SACC.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Carcinoma Adenoide Quístico/patología , Transición Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de las Glándulas Salivales/patología , Secuencia de Bases , Cadherinas/metabolismo , Carcinoma Adenoide Quístico/metabolismo , Línea Celular Tumoral , Cartilla de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor trkB , Neoplasias de las Glándulas Salivales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA