Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Neurol Ther ; 13(3): 763-784, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643256

RESUMEN

INTRODUCTION: Most current treatment strategies and investigations on cryptococcal meningitis (CM) focus primarily on the central nervous system (CNS), often overlooking the complex interplay between the CNS and the peripheral system. This study aims to explore the characteristics of central and peripheral metabolism in patients with CM. METHODS: Patients diagnosed with CM as per the hospital records of the Fourth People's Hospital of Nanning were retrospectively analyzed. Patients were divided into two groups, non-structural damage of the brain (NSDB) and structural damage of the brain (SDB), according to the presence of brain lesions as detected with imaging. Based on the presence of enlarged cerebral ventricles, the cases in the SDB group were classified into non-ventriculomegaly (NVM) and ventriculomegaly (VM). Various parameters of cerebrospinal fluid (CSF) and peripheral blood (PB) were analyzed. RESULTS: A significant correlation was detected between CSF and PB parameters. The levels of CSF-adenosine dehydrogenase (ADA), CSF-protein, CSF-glucose, and CSF-chloride ions were significantly correlated with the levels of PB-aminotransferase, PB-bilirubin, PB-creatinine (Cr), PB-urea nitrogen, PB-electrolyte, PB-protein, and PB-lipid. Compared with NSDB, the levels of CSF-glucose were significantly decreased in the SDB group, while the levels of CSF-lactate dehydrogenase (LDH) and CSF-protein were significantly increased in the SDB group. In the SDB group, the levels of PB-potassium, PB-hemoglobin(Hb), and PB-albumin were significantly decreased in the patients with VM, while the level of PB-urea nitrogen was significantly increased in these patients. CONCLUSION: Metabolic and structural alterations in the brain may be associated with peripheral metabolic changes.

2.
Am J Physiol Endocrinol Metab ; 326(6): E832-E841, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656129

RESUMEN

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1) by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.NEW & NOTEWORTHY In our study, we obtained a novel zebrafish line with thyroid dysgenesis (TD) and identified the candidate pathogenetic mutation TATA-box binding protein associated Factor 1 (taf1). Further researches revealed that taf1 was required for thyroid follicular cells by binding to the NOTCH1 promoter region. Our findings revealed a novel role of TAF1 in thyroid morphogenesis.


Asunto(s)
Proliferación Celular , Transducción de Señal , Factores Asociados con la Proteína de Unión a TATA , Glándula Tiroides , Factor de Transcripción TFIID , Pez Cebra , Animales , Pez Cebra/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Glándula Tiroides/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Disgenesias Tiroideas/genética , Disgenesias Tiroideas/metabolismo , Humanos , Histona Acetiltransferasas
3.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605010

RESUMEN

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Asunto(s)
Factor de Crecimiento de Hepatocito , Disgenesias Tiroideas , Animales , Ratones , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Cadherinas/genética , Disgenesias Tiroideas/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38654471

RESUMEN

CONTEXT: Congenital hypothyroidism (CH) is the most common endocrine disorder in neonates, but its etiology is still poorly understood. OBJECTIVE: We performed whole exome sequencing to identify novel causative gene for CH and functional studies to validate its role in the occurrence of CH. METHODS: Whole exome sequencing in 98 CH patients not harboring known CH candidate genes and bioinformatic analysis were performed. Functional analysis was performed using morpholino, a synthetic short antisense oligonucleotide that contains 25 DNA bases on a methylene morpholine backbone, in zebrafish and CRISPR‒Cas9-mediated gene knockout in mice. RESULTS: Eukaryotic translation initiation factor 4B (EIF4B) was identified as the most promising candidate gene. The EIF4B gene was inherited in an autosomal recessive model, and one patient with thyroid dysgenesis carried EIF4B biallelic variants (p.S430F/p.P328L). In zebrafish, the knockdown of eif4ba/b expression caused thyroid dysgenesis and growth retardation. Thyroid hormone levels were significantly decreased in morphants compared with controls. Thyroxine treatment in morphants partially rescued growth retardation. In mice, the homozygous conceptuses of Eif4b+/- parents did not survive. Eif4b knockout embryos showed severe growth retardation, including thyroid dysgenesis and embryonic lethality before E18.5. CONCLUSION: These experimental data supported a role for EIF4B function in the pathogenesis of the hypothyroid phenotype seen in CH patients. Our work indicated that EIF4B was identified as a novel candidate gene in CH. EIF4B is essential for animal survival, but further studies are needed to validate its role in the pathogenesis of CH.

5.
Ann Lab Med ; 44(4): 343-353, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433572

RESUMEN

Background: Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype-phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes. Methods: In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity. Results: Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants. Conclusions: We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.


Asunto(s)
Hipotiroidismo Congénito , Humanos , China , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , AMP Cíclico , Oxidasas Duales/genética , Mutación , Fenotipo , Receptores de Tirotropina/genética , Tirotropina
6.
J Adv Res ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527587

RESUMEN

INTRODUCTION: With age and ATP decrease in the body, the transcription factors hypophosphorylation weakens the transcription of Slc40a1 and hinders the expression of the iron discharger ferroportin. This may lead to iron accumulation in the brain and the catalysis of free radicals that damage cerebral neurons and eventually lead to Alzheimer's disease (AD). OBJECTIVES: To prevent AD caused by brain iron excretion disorders and reveal the mechanism of J bs-5YP peptide restoring ferroportin. METHODS: We prepared J bs-YP peptide and administered it to the senile mice with dementia. Then, the intelligence of the mice was tested using a Morris Water Maze. The ATP content in the body was detected using the ATP hydrophysis and Phosphate precipitation method. The activation of Slc40a1 transcription was assayed with ATAC seq and the ferroportin, as well as the phosphorylation levels of Ets1 in brain were detected by Western Blot. RESULTS: The phosphorylation level of Ets1in brain was enhanced, and subsequently, the transcription of Slc40a1 was activated and ferroportin was increased in the brain, the levels of iron and free radicals were reduced, with the neurons protection, and the dementia was ultimately alleviated in the senile mice. CONCLUSION: J bs-5YP can recover the expression of ferroportin to excrete excessive iron in the brain of senile mice with dementia by enhancing the transcription of Slc40a1 via phosphorylating Ets1, revealing the potential of J bs-5YP as a drug to alleviate senile dementia.

7.
Anal Chim Acta ; 1287: 342121, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182392

RESUMEN

BACKGROUND: The spectral dual-mode response towards analyte has been attracted much attention, benefiting from the higher detection accuracy of such strategy in comparison to single signal readout. However, the currently reported dual-mode sensors for acid phosphatase (ACP) activity are still limited, and most of them more or less exist some deficiencies, such as complicated construction procedure, high-cost, poor biocompatibility, aggregation-caused quenching and limited emission capacity. RESULTS: Herein, we employed Fe3+ functionalized CuInS2/ZnS quantum dots (CIS/ZnS QDs) as nanosensor to develop a novel fluorometric and colorimetric dual-mode assay for ACP activity, combing with ACP-triggered hydrolysis of ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA). The Fe3+ binding to CIS/ZnS QDs can be reduced into Fe2+ during the determination, resulting in the dramatically weakened photoinduced electron transfer (PET) effect and the disappearance of competition absorption. Thus, a highly sensitive ACP assay in the range of 0.22-12.5 U L-1 through fluorescence "turn-on" mode has been achieved with a detection of limit (LOD) of 0.064 U L-1. Meanwhile, the ACP activity can also be quantified by spectrophotometry based on the chromogenic reaction of the formed Fe2+ with 1,10-phenanthroline (Phen). Moreover, the designed nanosensor with good biocompatibility was successfully applied to image and monitor the ACP levels in living cells. SIGNIFICANCE: We believe that the proposed method has remarkable advantages and potential application for ACP assay in terms of the high accuracy, simplicity, low cost, as well as its adequate sensitivity.


Asunto(s)
Puntos Cuánticos , Colorimetría , Fluorometría , Espectrofotometría , Bioensayo
8.
Thyroid ; 34(3): 324-335, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38183624

RESUMEN

Background: Congenital hypothyroidism (CH) is the most common neonatal metabolic disorder. In patients with CH in China, thyroid dyshormonogenesis is more common than thyroid dysgenesis; however, the genetic causes of CH due to thyroid dyshormonogenesis remain largely unknown. Therefore, we aimed at identifying novel candidate causative genes for CH. Methods: To identify novel CH candidate genes, a total of 599 patients with CH were enrolled and next-generation sequencing was performed. The functions of the identified variants were confirmed using HEK293T and FTC-133 cell lines in vitro and in a mouse model organism in vivo. Results: Three pathogenic contactin 6 (CNTN6) variants were identified in two patients with CH. Pedigree analysis showed that CH caused by CNTN6 variants was inherited in an autosomal recessive pattern. The CNTN6 gene was highly expressed in the thyroid in humans and mice. Cntn6 knockout mice presented with thyroid dyshormonogenesis and CH due to the decreased expression of crucial genes for thyroid hormone biosynthesis (Slc5a5, Tpo, and Duox2). All three CNTN6 variants resulted in the blocking of the release of the Notch intracellular domain, which could not translocate into the nucleus, impaired NOTCH1 transcriptional activity, and decreased expression of SLC5A5, TPO, and DUOX2. Further, we found that DTX1 was required for CNTN6 to promote thyroid hormone biosynthesis through Notch signaling. Conclusions: This study demonstrated that CNTN6 is a novel causative gene for CH through the mediation of thyroid hormone biosynthesis via Notch signaling, which provides new insights into the genetic background and mechanisms involved in CH and thyroid dyshormonogenesis.


Asunto(s)
Hipotiroidismo Congénito , Humanos , Animales , Ratones , Hipotiroidismo Congénito/genética , Oxidasas Duales/genética , Células HEK293 , Mutación , Yoduro Peroxidasa/genética , Hormonas Tiroideas , Contactinas/genética
9.
CNS Neurosci Ther ; 30(3): e14437, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37650345

RESUMEN

BACKGROUND: The use of two or more drugs carries the potential risk of drug-drug interactions (DDIs), which may result in adverse reactions. Some human immunodeficiency virus (HIV)-infected patients who receive antiretroviral therapy (ART) may require general anesthesia with propofol (PRL) before undergoing surgical treatment. Both PRL and ART drugs may lead to neuronal dysfunction, which can be accompanied by energy metabolism disorders. Neurons take in glucose mainly through glucose transporter 3 (Glut3) which is specifically expressed on the cell membranes of neurons. However, to date, no study has examined whether the DDIs of PRL and ART drugs interfere with glucose metabolism and Glut3 expression in neurons. METHODS: An in vitro model was constructed using the primary cultures of neurons. PRL and ART drugs (EFV, AZT, and 3TC), were added at different concentrations (low, medium, and high). The neurons were exposed to the drugs for 1, 4, 8, and 12 h. The optimal drug concentration and exposure time were selected. The cellular survival rate, glucose concentration, electrophysiology, and the expression of Glut3 were detected. RESULTS: There were no significant changes in the cellular survival rates of the neurons that were exposed to both PRL and ART drugs at low concentrations for 1 h. However, the survival rates of the neurons decreased significantly as the drug concentrations and durations increased. The glucose concentration of the neurons that were exposed to both PRL and the ART drugs was significantly decreased. The glucose concentration of the neurons was not affected by any individual drug. The amplitude of the action potential and the expression of Glut3 were decreased in the neurons that were exposed to both PRL and ART drugs. CONCLUSIONS: The main adverse reactions induced by the DDIs between PRL and the ART drugs were decreased glucose metabolism and neuronal damage, which were caused by inhibiting the expression of Glut3. More importantly, we found that decreases in glucose metabolism predated neuronal damage.


Asunto(s)
Infecciones por VIH , Propofol , Humanos , Propofol/farmacología , Transportador de Glucosa de Tipo 3/metabolismo , Neuronas/metabolismo , Glucosa/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Interacciones Farmacológicas
10.
Nat Commun ; 14(1): 8082, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057310

RESUMEN

The pathogenesis of thyroid dysgenesis (TD) is not well understood. Here, using a combination of single-cell RNA and spatial transcriptome sequencing, we identify a subgroup of NF-κB-activated thyrocytes located at the center of thyroid tissues in postnatal mice, which maintained a partially mesenchymal phenotype. These cells actively protruded out of the thyroid primordium and generated new follicles in zebrafish embryos through continuous tracing. Suppressing NF-κB signaling affected thyrocyte migration and follicle formation, leading to a TD-like phenotype in both mice and zebrafish. Interestingly, during thyroid folliculogenesis, myeloid cells played a crucial role in promoting thyrocyte migration by maintaining close contact and secreting TNF-α. We found that cebpa mutant zebrafish, in which all myeloid cells were depleted, exhibited thyrocyte migration defects. Taken together, our results suggest that myeloid-derived TNF-α-induced NF-κB activation plays a critical role in promoting the migration of vertebrate thyrocytes for follicle generation.


Asunto(s)
FN-kappa B , Células Epiteliales Tiroideas , Animales , Ratones , Células Mieloides , Factor de Necrosis Tumoral alfa , Pez Cebra
11.
Horm Res Paediatr ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37703865

RESUMEN

INTRODUCTION: Congenital hypothyroidism (CH), the most common neonatal endocrine disorder world-wide, can be caused by variants in the thyroid peroxidase (TPO) gene. This study aimed to identify TPO variants in Chinese patients with CH, analyze their impact on TPO function, and establish relationships between TPO genotypes and clinical characteristics. METHODS: A total of 328 patients with CH were screened for TPO variants by performing whole exome sequencing. The function of the detected TPO variants was investigated via transfection assays in vitro. The pathogenic effect of five novel variants was further assessed in silico. RESULTS: Among 328 patients with CH, 19 TPO variants, including six novel ones, were identified in 43 patients. Eighteen patients (5.5%) carried biallelic TPO variants. In vitro experiments showed that TPO activity was impaired to varying degrees in 17 variants. Furthermore, we determined that a residual TPO enzyme activity threshold of 15% may serve as a criterion for differentiating CH severity. CONCLUSIONS: According to our study, the prevalence of TPO variants among Chinese patients with CH was 13.1 %. Five novel variants led to impaired TPO function by altering its structure or by affecting its expression or cellular localization, which should result in impaired thyroid hormone synthesis.

12.
Oncogene ; 42(18): 1466-1477, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928361

RESUMEN

Orthodenticle homeobox (OTX1) is reported to be involved in numerous cancers, but the expression level and molecular function of OTX1 in gallbladder cancer (GBC) remain unknown. Here, we found the elevated level of OTX1 associated with poor prognosis in human gallbladder cancer. In vitro and in vivo studies of human gallbladder cancer cell lines demonstrated that overexpression of OTX1 promoted cell proliferation, whereas the downregulation inhibited it. Additionally, we found a tight correlation between the serum level of taurodeoxycholic acid (TDCA) and OTX1 expression. TDCA-induced activation of YAP1 by phosphorylation inhibition contributed to the transcriptional activation of OTX1. Mechanistically, we identified that OTX1 activated AKT signaling pathway by transactivating the expression of IFITM3 and thus promoted the proliferation of GBC cells. Taken together, our results showed that TDCA-YAP1-dependent expression of OTX1 regulated IFITM3 and affected GBC proliferation via the AKT signaling pathway. Our experiments also suggested that OTX1 is a novel therapeutic target for GBC.


Asunto(s)
Neoplasias de la Vesícula Biliar , Humanos , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias de la Vesícula Biliar/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción Otx/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Ácido Taurodesoxicólico/farmacología
13.
J Med Genet ; 60(9): 874-884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36898841

RESUMEN

BACKGROUND: In several countries, thyroid dyshormonogenesis is more common than thyroid dysgenesis in patients with congenital hypothyroidism (CH). However, known pathogenic genes are limited to those directly involved in hormone biosynthesis. The aetiology and pathogenesis of thyroid dyshormonogenesis remain unknown in many patients. METHODS: To identify additional candidate pathogenetic genes, we performed next-generation sequencing in 538 patients with CH and then confirmed the functions of the identified genes in vitro using HEK293T and Nthy-ori 3.1 cells, and in vivo using zebrafish and mouse model organisms. RESULTS: We identified one pathogenic MAML2 variant and two pathogenic MAMLD1 variants that downregulated canonical Notch signalling in three patients with CH. Zebrafish and mice treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester, a γ-secretase inhibitor exhibited clinical manifestations of hypothyroidism and thyroid dyshormonogenesis. Through organoid culture of primary mouse thyroid cells and transcriptome sequencing, we demonstrated that Notch signalling within thyroid cells directly affects thyroid hormone biosynthesis rather than follicular formation. Additionally, these three variants blocked the expression of genes associated with thyroid hormone biosynthesis, which was restored by HES1 expression. The MAML2 variant exerted a dominant-negative effect on both the canonical pathway and thyroid hormone biosynthesis. MAMLD1 also regulated hormone biosynthesis through the expression of HES3, the target gene of the non-canonical pathway. CONCLUSIONS: This study identified three mastermind-like family gene variants in CH and revealed that both canonical and non-canonical Notch signalling affected thyroid hormone biosynthesis.


Asunto(s)
Hipotiroidismo Congénito , Animales , Humanos , Ratones , Hipotiroidismo Congénito/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Mutación , Proteínas Nucleares/genética , Hormonas Tiroideas/genética , Transactivadores/genética , Factores de Transcripción/genética , Pez Cebra
14.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824359

RESUMEN

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Asunto(s)
Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Animales , Hipófisis/metabolismo , Hormonas Tiroideas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Biochem Biophys Res Commun ; 642: 21-26, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36543020

RESUMEN

The thyroid follicular cells originate from the foregut endoderm and elucidating which genes and signaling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to carry an ENU-based forward mutagenesis screen aiming at identifying genes involved in the development and function of the thyroid follicular cells. ENU is an excellent chemical mutagen due to its high mutation efficiency and an indiscriminate selection of genes. A total of 1606 F2 families from 36 ENU treated founders was raised and embryos from F3 generation were collected at 5dpf to perform the whole embryo in situ hybridization with a cocktail probe of thyroid marker thyroglobulin(tg), pituitary marker thyroid stimulating hormone (tshba) to determine the mutagenic phenotype. Among the 1606 F2 families, 112 F2 mutant families with normal development stages except for thyroid dysfunction were identified and divided into three different groups according to their phenotypic characteristics. Further studies of the mutants are likely to shed more insights into the molecular basis of both the thyroid development and function in the zebrafish and vertebrate.


Asunto(s)
Glándula Tiroides , Pez Cebra , Animales , Pez Cebra/genética , Pruebas Genéticas , Mutación , Mutagénesis
16.
Front Public Health ; 10: 1010059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530713

RESUMEN

Objective: For a safe and healthy workplace in the health sector, the International Labor Organization (ILO) and the World Health Organization (WHO) jointly developed HealthWISE, an international technical tool that helps health workers (HWs) to identify workplace hazards and apply low-cost solutions. This study sought to gather experiences and lessons from a Chinese pilot hospital for the scale-up application of HealthWISE. Methods: A qualitative study was undertaken at a Chinese public hospital with a ≥5-year application of HealthWISE through in-depth interviews with targeted HWs who participated in the Training-of-Trainer (TOT) workshops, and observations were gathered using evidence from photos and publications, then, thematic analysis was formulated. Results: Driven by motivation, the participants learned from the HealthWISE TOT workshop alongside the favorite and worst parts of it. Positive changes and results of occupational health for HWs occurred after the workshop, the participants trained others and planned to implement HealthWISE within their responsibility. During the COVID-19 Pandemic, the Hospital acted the approaches of protecting the health, safety and well-being of HWs with significant results. Further suggestions on workshop and HealthWISE implementing as well as the national policies were collected. The study indicated the Hospital's experience of leadership and participation, supporting and facilitating, system establishment, and culture creation. The suggestion included keeping staff engaged under a positive safety and health culture, promoting recognition of HealthWISE among public health institutions nationwide, developing online courses for medical colleges, focusing on the alignment among various law systems, and adopting measures under the principle of the hierarchy of occupational hazards controls. Conclusion: This study has demonstrated the systematic improvement of occupational health for HWs by HealthWISE implementation in the Chinese hospital. The valuable experiences and lessons derived here can be shared with other hospitals in China and beyond, especially under the unprecedented challenges of the COVID-19 pandemic, to achieve the goals of safety, health, and well-being for HWs by building a resilient health system.


Asunto(s)
COVID-19 , Salud Laboral , Humanos , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Personal de Salud , Hospitales
17.
Diabetol Metab Syndr ; 14(1): 171, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397166

RESUMEN

Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.

18.
Free Radic Biol Med ; 190: 216-225, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970250

RESUMEN

Iron accumulates in the brain with age and catalyzes free radical damage to neurons, thus playing a pathogenic role in Alzheimer's disease (AD). To decrease the incidence of AD, we synthesized the iron-affinitive peptide 5YHEDA to scavenge the excess iron in the senile brain. However, the blood-brain barrier (BBB) blocks the entrance of macromolecules into the brain, thus decreasing the therapeutic effects. To facilitate the entrance of the 5YHEDA peptide, we linked the low-density lipoprotein receptor (LDLR)-binding segment of ApoB-100 to 5YHEDA (named "bs-YHEDA"). The results of intravenous injections of bs-5YHEDA into senescent mice demonstrated that bs-YHEDA entered the brain, increased ferriportin levels, reduced iron and free radical levels, decreased the consequences of neuronal necrosis and ameliorated cognitive disfunction without kidney or liver damage. bs-5YHEDA is a safe iron and free radical remover that potentially alleviates aging and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Radicales Libres , Inteligencia , Hierro/uso terapéutico , Ratones , Péptidos
19.
Front Immunol ; 13: 897569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720272

RESUMEN

Recent studies highlighted that CD8+ T cells are necessary for restraining reservoir in HIV-1-infected individuals who undergo antiretroviral therapy (ART), whereas the underlying cellular and molecular mechanisms remain largely unknown. Here, we enrolled 60 virologically suppressed HIV-1-infected individuals, to assess the correlations of the effector molecules and phenotypic subsets of CD8+ T cells with HIV-1 DNA and cell-associated unspliced RNA (CA usRNA). We found that the levels of HIV-1 DNA and usRNA correlated positively with the percentage of CCL4+CCL5- CD8+ central memory cells (TCM) while negatively with CCL4-CCL5+ CD8+ terminally differentiated effector memory cells (TEMRA). Moreover, a virtual memory CD8+ T cell (TVM) subset was enriched in CCL4-CCL5+ TEMRA cells and phenotypically distinctive from CCL4+ TCM subset, supported by single-cell RNA-Seq data. Specifically, TVM cells showed superior cytotoxicity potentially driven by T-bet and RUNX3, while CCL4+ TCM subset displayed a suppressive phenotype dominated by JUNB and CREM. In viral inhibition assays, TVM cells inhibited HIV-1 reactivation more effectively than non-TVM CD8+ T cells, which was dependent on CCL5 secretion. Our study highlights CCL5-secreting TVM cells subset as a potential determinant of HIV-1 reservoir size. This might be helpful to design CD8+ T cell-based therapeutic strategies for cure of the disease.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Linfocitos T CD8-positivos , Diferenciación Celular , Quimiocina CCL5/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Humanos
20.
Front Microbiol ; 13: 829694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197957

RESUMEN

Characterization of T cell receptor (TCR) repertoires is essential for understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection involving T cell adaptive immunity. The characteristics of TCR sequences and distinctive signatures of T cell subsets in tuberculous patients are still unclear. By combining single-cell TCR sequencing (sc-TCR seq) with single-cell RNA sequencing (sc-RNA seq) and flow cytometry to characterize T cells in tuberculous pleural effusions (TPEs), we identified 41,718 CD3+ T cells in TPEs and paired blood samples, including 30,515 CD4+ T cells and 11,203 CD8+ T cells. Compared with controls, no differences in length and profile of length distribution were observed in complementarity determining region 3 (CDR3) in both CD4+ and CD8+ T cells in TPE. Altered hydrophobicity was demonstrated in CDR3 in CD8+ T cells and a significant imbalance in the TCR usage pattern of T cells with preferential expression of TRBV4-1 in TPE. A significant increase in clonality was observed in TCR repertoires in CD4+ T cells, but not in CD8+ T cells, although both enriched CD4+ and CD8+ T cells showed TH1 and cytotoxic signatures. Furthermore, we identified a new subset of polyfunctional CD4+ T cells with CD1-restricted, TH1, and cytotoxic characteristics, and this subset might provide protective immunity against Mtb.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...