Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(2): 269-275, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38112593

RESUMEN

Chlorine-doped MoS2 quantum dots (Cl-MoS2 QDs) embedded in a SiO2 molecularly imprinted polymer (Cl-MoS2 QDs@SiO2@MIP) have been successfully synthesized and can be used for highly selective and sensitive optosensing of quercetin. The novel environmentally friendly sensor integrated the advantages of the Cl-MoS2 QDs and MIP, high sensitivity and specific recognition for quercetin. The as-fabricated sensor is used to detect trace amounts of quercetin, and its fluorescence intensity showed a good linear decline with the increasing concentration of quercetin from 2 ng mL-1 to 200 ng mL-1 with a detection limit of 1.2 ng mL-1 (S/N = 3). The Cl-MoS2 QDs@SiO2@MIP probe was employed to assay the content of quercetin of real onion extract with good performance, which is in fine agreement with the result obtained by high performance liquid chromatography. The developed Cl-MoS2 QDs@SiO2@MIP sensor exhibits promising potential in the detection of quercetin.


Asunto(s)
Impresión Molecular , Puntos Cuánticos , Puntos Cuánticos/química , Polímeros Impresos Molecularmente , Cloro , Quercetina , Molibdeno , Dióxido de Silicio/química , Impresión Molecular/métodos , Halógenos
2.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37874974

RESUMEN

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

3.
RSC Adv ; 13(21): 14554-14564, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188247

RESUMEN

An activated carbon-supported Cu/ZnO catalyst (CCZ-AE-ox) was successfully obtained by the ammonia evaporation method for the hydrogenation of carbon dioxide to methanol, and the surface properties of the catalyst post-calcination and reduction were investigated. Activated carbon facilitated the increased dispersion of the loaded metals, which promote the CO2 space-time yield (STY) of methanol and turnover frequency (TOF) on the active sites. Furthermore, the factors affecting the catalyst in the hydrogenation of CO2 to methanol were in-depth investigated. The larger surface area and higher CO2 adsorption capacity are found to make possible the main attributions of the superior activity of the CCZ-AE-ox catalyst.

4.
Anal Methods ; 15(20): 2490-2496, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37183653

RESUMEN

Recently, MoS2 quantum dots (QDs) have receive widespread attention as a promising luminescent material. However, so far, little effort has been made on the multicolor emission of MoS2 QDs. Herein, an in situ iodine doping strategy is presented and used to synthesize tunable-photoluminescent (PL) MoS2 QDs. By fine iodine doping, the PL of the MoS2 QDs (I-MoS2 QDs) can be tuned in the range from 423 nm to 529 nm, which exceeds the as-reported emission wavelength range. Studies using controlled experiments and density functional theory (DFT) reveal that the change in electronic state of MoS2 QDs is responsible for the changing PL due to iodine doping. As-synthesized I-MoS2 QDs combined with Fe3+ is developed as a "turn-off-on" fluorescence sensor for F- ions in water. The fluorescence probe has a fine linear response to F- ions in the concentration range of 2.5-80 µM, and the limit of detection is 1.4 µM (S/N = 3).

5.
Cell Rep ; 42(2): 112069, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36753418

RESUMEN

The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.


Asunto(s)
Neuronas , Núcleo Accumbens , Núcleo Accumbens/fisiología , Neuronas/fisiología , Motivación , Recompensa
6.
J Am Chem Soc ; 144(45): 20923-20930, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36327099

RESUMEN

InP-based quantum dot (QD) light-emitting diodes (QLEDs) provide a heavy-metal-free route to size-tuned LEDs having high efficiency. The stability of QLEDs may be enhanced by replacing organic hole-injection layers (HILs) with inorganic layers. However, inorganic HILs reported to date suffer from inefficient hole injection, the result of their shallow work functions. Here, we investigate the tuning of the work function of nickel oxide (NiOx) HILs using self-assembled molecules (SAMs). Density functional theory simulations and near-edge X-ray absorption fine structure put a particular focus onto the molecular orientation of the SAMs in tuning the work function of the NiOx HIL. We find that orientation plays an even stronger role than does the underlying molecular dipole itself: SAMs having the strongest electron-withdrawing nitro group (NO2), despite having a high intrinsic dipole, show limited work function tuning, something we assign to their orientation parallel to the NiOx surface. We further find that the NO2 group─which delocalizes electrons over the molecule by resonance─induces a deep lowest unoccupied molecular orbital level that accepts electrons from QDs, producing luminescence quenching. In contrast, SAMs containing a trifluoromethyl group exhibit an angled orientation relative to the NiOx surface, better activating hole injection into the active layer without inducing luminescence quenching. We report an external quantum efficiency (EQE) of 18.8%─the highest EQE among inorganic HIL-based QLEDs (including Cd-based QDs)─in InP QLEDs employing inorganic HILs.

7.
RSC Adv ; 12(43): 27933-27939, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320233

RESUMEN

It is well accepted that peroxynitrite (ONOO-) plays a crucial role in various physiological and pathological processes. Thus, the detection and imaging of ONOO- in vitro and in vivo with high selectivity and sensitivity is of great significance. Here we report two simple benzothiazole-based fluorescent chemosensors, BS1 and BS2. Under physiological pH, both probes could quickly sense ONOO- with a remarkable "turn-on" fluorescence signal at 430 nm. The limit of detection (LOD) of BS1 and BS2 toward ONOO- was 12.8 nM and 25.2 nM, respectively, much lower than the reported values. Experimental results indicated that BS1 with a diphenyl phosphonate unit presented higher selectivity for ONOO- than BS2. Furthermore, based on the advantages of lower cytotoxicity and pH-stabilities of BS1, probe BS1 was successfully employed to detect and image ONOO- in HepG2 cells. More importantly, we used BS1 to successfully showcase drug-induced hepatotoxicity via imaging ONOO- upregulated by acetaminophen (APAP), and also evaluated the remediation effect of GSH. All the results illustrated that the fluorescent probe BS1 has great potential for the detection of ONOO- and to further uncover the roles of ONOO- during the drug-induced liver injury (DILI) process.

8.
RSC Adv ; 12(36): 23618-23625, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36090421

RESUMEN

MoS2 has attracted great attention as a prospective electrocatalyst for generating hydrogen via water electrolysis due to its abundant and inexpensive sources. However, bulk MoS2 has weak electrocatalytic activity because of its low electrical conductivity and few edge-active sites. Controllable synthesis of MoS2 with ultrasmall size or complex morphology may be an available strategy to boost its conductivity and edge-active sites. Herein, a facile single-precursor strategy was developed to prepare nanoscale MoS2 with various morphologies, including quantum dots, nanorods, nanoribbons, and nanosheets. In-depth studies show that the formation of MoS2 with various shapes is determined by both kinetic and thermodynamic factors such as reaction time and temperature. Electrocatalytic tests reveal that MoS2 quantum dots have high electrocatalytic performance with a low overpotential of 255 mV and a small Tafel slope of 66 mV dec-1 due to the abundant exposed active edges and excellent intrinsic conductivity.

9.
Mol Pain ; 18: 17448069221094529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35354345

RESUMEN

The anterior cingulate cortex (ACC) is a key cortical region that plays an important role in pain perception and emotional functions. Previous studies of the ACC projections have been collected primarily from monkeys, rabbits and rats. Due to technological advances, such as gene manipulation, recent progress has been made in our understanding of the molecular and cellular mechanisms of the ACC-related chronic pain and emotion is mainly obtained from adult mice. Few anatomic studies have examined the whole-brain projections of the ACC in adult mice. In the present study, we examined the continuous axonal outputs of the ACC in the whole brain of adult male mice. We used the virus anterograde tracing technique and an ultrahigh-speed imaging method of Volumetric Imaging with Synchronized on-the-fly-scan and Readout (VISoR). We created a three-dimensional (3D) reconstruction of mouse brains. We found that the ACC projected ipsilaterally primarily to the caudate putamen (CPu), ventral thalamic nucleus, zona incerta (ZI), periaqueductal gray (PAG), superior colliculus (SC), interpolar spinal trigeminal nucleus (Sp5I), and dorsal medullary reticular nucleus (MdD). The ACC also projected to contralateral brain regions, including the ACC, reuniens thalamic nucleus (Re), PAG, Sp5I, and MdD. Our results provide a whole-brain mapping of efferent projections from the ACC in adult male mice, and these findings are critical for future studies of the molecular and synaptic mechanisms of the ACC and its related network in mouse models of brain diseases.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo , Animales , Encéfalo , Vías Eferentes , Masculino , Ratones , Sustancia Gris Periacueductal , Conejos , Ratas , Núcleo Espinal del Trigémino
10.
Mol Pain ; 18: 17448069221087034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35240879

RESUMEN

The anterior cingulate cortex (ACC) is located in the frontal part of the cingulate cortex, and plays important roles in pain perception and emotion. The thalamocortical pathway is the major sensory input to the ACC. Previous studies have show that several different thalamic nuclei receive projection fibers from spinothalamic tract, that in turn send efferents to the ACC by using neural tracers and optical imaging methods. Most of these studies were performed in monkeys, cats, and rats, few studies were reported systematically in adult mice. Adult mice, especially genetically modified mice, have provided molecular and synaptic mechanisms for cortical plasticity and modulation in the ACC. In the present study, we utilized rabies virus-based retrograde tracing system to map thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined with a new high-throughput VISoR imaging technique to generate a three-dimensional whole-brain reconstruction, especially the thalamus. We found that cortical neurons in the ACC received direct projections from different sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral, midline, and intralaminar thalamic nuclei. These findings provide key anatomic evidences for the connection between the thalamus and ACC.


Asunto(s)
Giro del Cíngulo , Tálamo , Animales , Giro del Cíngulo/metabolismo , Ratones , Vías Nerviosas , Neuronas , Ratas , Núcleos Talámicos/fisiología
11.
Nat Commun ; 12(1): 6089, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667176

RESUMEN

Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.

12.
Nat Biotechnol ; 39(12): 1521-1528, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34312500

RESUMEN

Whole-brain mesoscale mapping in primates has been hindered by large brain sizes and the relatively low throughput of available microscopy methods. Here, we present an approach that combines primate-optimized tissue sectioning and clearing with ultrahigh-speed fluorescence microscopy implementing improved volumetric imaging with synchronized on-the-fly-scan and readout technique, and is capable of completing whole-brain imaging of a rhesus monkey at 1 × 1 × 2.5 µm3 voxel resolution within 100 h. We also developed a highly efficient method for long-range tracing of sparse axonal fibers in datasets numbering hundreds of terabytes. This pipeline, which we call serial sectioning and clearing, three-dimensional microscopy with semiautomated reconstruction and tracing (SMART), enables effective connectome-scale mapping of large primate brains. With SMART, we were able to construct a cortical projection map of the mediodorsal nucleus of the thalamus and identify distinct turning and routing patterns of individual axons in the cortical folds while approaching their arborization destinations.


Asunto(s)
Mapeo Encefálico , Encéfalo , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Macaca mulatta
13.
Mater Sci Eng C Mater Biol Appl ; 112: 110898, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409055

RESUMEN

Nitrogen-doped MoS2 quantum dots (N-MoS2 QDs) were synthesized via a facile hydrothermal approach, and exhibited high fluorescence quantum yield (QY, 14.9%), excellent photostability, biocompatibility and water solubility. A novel method with good selectivity and sensitivity was established to assay hematin using N-MoS2 QDs as a fluorescent probe based on inner filter effect (IFE). Fluorescent quenching of N-MoS2 QDs has a fine linear dependence with the concentration of hematin in the range of 0.5-15 µmol/L and a limit of detection of 0.32 µmol/L (S/N = 3). By the detection method, average concentration of hematin in real health human erythrocytes was measured as 22.5 ± 3.9 µmol/L. And, recoveries range varied from 94 to 108% through standard recovery experiment. The N-MoS2 QDs probe shows excellent photostability, low cytotoxicity and anti-interference ability for hematin assay, which may become a promising method for the test of hematin in human blood.


Asunto(s)
Disulfuros/química , Hemina/análisis , Molibdeno/química , Nitrógeno/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Células A549 , Supervivencia Celular/efectos de los fármacos , Eritrocitos/metabolismo , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Microscopía Fluorescente , Puntos Cuánticos/toxicidad , Solubilidad
14.
Mol Brain ; 12(1): 38, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014383

RESUMEN

Itch contagion has been reported in human when people watch someone scratching in a video. The basic mechanism of contagious itch induced by scratching video is still being investigated. A recent study has reported that adult mice showed itch like responses after watching itch-like video or mice showing itching responses. However, such contagious itch behaviors failed to be reproduced by another study by repeating the same experiments of viewing itching mice. It is unclear if contagious itch induced by seeing itching video may be reproducible. In the present study, we used a four-iPad paradigm to repeat these experiments, and found that mice showed no significant itch-like responses after watching itching video of mice. To test if mice actually can see the video, we placed mirrors at the same location. Interestingly, mice showed altered activities in the open field with the mirrors. Finally, in healthy subjects, we found that viewing human itch video did cause itch sensation or responses. Our results indicate that the mouse model may not appropriate for studying contagious itch in humans.


Asunto(s)
Prurito/patología , Adulto , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Dolor/patología , Roedores , Grabación en Video , Adulto Joven
15.
Langmuir ; 33(28): 7124-7129, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28661693

RESUMEN

Colloidal quantum dots can be stabilized in either a polar solvent or a nonpolar solvent depending on their surface chemistry. The former is typically achieved by charge stabilization while the latter by steric hindrance. This allows reversible tuning of their surface polarity for targeted application by engineering their ligand profile. Here we developed a hybrid stabilization approach that leveraged a combination of steric hindrance and charge stabilization simultaneously. We demonstrated this mechanism in a phase transfer process where hexane dispersed and hydrophobic CdSe/CdS core/shell quantum dots were exchanged into the hydrophilic dimethylformamide (DMF) phase. This was achieved by employing both Z-type cadmium acetate and X-type halide ligands. The results suggested only by using this hybrid stabilization strategy were we able to achieve good colloidal stability while preserving their photoluminescence quantum yield. This hybrid ligand strategy may promise new opportunities for the application of QDs in optoelectronic areas.

16.
Sci Rep ; 6: 22244, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26924205

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid-ß (Aß) deposition in the brain. Aß plaques are produced through sequential ß/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Edición Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia Conservada , Humanos , Dinámicas Mitocondriales/genética , Mutación , Motivos de Nucleótidos , Unión Proteica
17.
J Sep Sci ; 36(21-22): 3592-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24039166

RESUMEN

The SPE of leukotrienes and eicosatetraenoic acids using anion exchange materials was compared to the classical extraction with C18 columns. A silica-based strong anion exchanger, a polymer-based weak anion exchanger, and a polymer-based mixed-mode strong anion exchanger were studied. All anion exchange materials displayed a higher recovery of the analytes with values between 70 and 90% when extracting standard solutions and analyzing by HPLC. The effect was less pronounced for the analysis of the compounds in incubations of polymorphonuclear leukocytes. Using MEKC with head-column field-amplified sample stacking for analyte quantification, much lower values of the peak areas were observed compared to the determination of the recovery of the analytes by HPLC. Using MEKC analysis, the highest values were found for the polymer-based weak anion exchange material, while values below 10% were found for the polymer-based mixed mode strong anion exchanger. This could be attributed to the presence of electrolytes in the eluates that compromised the stacking efficiency. The extent of residual electrolytes depended on the SPE protocol, resulting in large differences of the amount of analyte determined by MEKC when applying head-column field-amplified sample stacking for online analyte concentration.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/metabolismo , Cromatografía Capilar Electrocinética Micelar , Leucotrienos/análisis , Leucotrienos/metabolismo , Extracción en Fase Sólida , Cromatografía Líquida de Alta Presión , Humanos , Neutrófilos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA