Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Am J Cancer Res ; 14(5): 2661-2664, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859840

RESUMEN

[This corrects the article on p. 3947 in vol. 12, PMID: 36119838.].

2.
Pharmaceuticals (Basel) ; 17(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794205

RESUMEN

BACKGROUND: Neddylation, a post-translational modification process, plays a crucial role in various human neoplasms. However, its connection with kidney renal clear cell carcinoma (KIRC) remains under-researched. METHODS: We validated the Gene Set Cancer Analysis Lite (GSCALite) platform against The Cancer Genome Atlas (TCGA) database, analyzing 33 cancer types and their link with 17 neddylation-related genes. This included examining copy number variations (CNVs), single nucleotide variations (SNVs), mRNA expression, cellular pathway involvement, and methylation. Using Gene Set Variation Analysis (GSVA), we categorized these genes into three clusters and examined their impact on KIRC patient prognosis, drug responses, immune infiltration, and oncogenic pathways. Afterward, our objective is to identify genes that exhibit overexpression in KIRC and are associated with an adverse prognosis. After pinpointing the specific target gene, we used the specific inhibitor MLN4924 to inhibit the neddylation pathway to conduct RNA sequencing and related in vitro experiments to verify and study the specificity and potential mechanisms related to the target. This approach is geared towards enhancing our understanding of the prognostic importance of neddylation modification in KIRC. RESULTS: We identified significant CNV, SNV, and methylation events in neddylation-related genes across various cancers, with notably higher expression levels observed in KIRC. Cluster analysis revealed a potential trade-off in the interactions among neddylation-related genes, where both high and low levels of gene expression are linked to adverse prognoses. This association is particularly pronounced concerning lymph node involvement, T stage classification, and Fustat score. Simultaneously, our research discovered that PSMB10 exhibits overexpression in KIRC when compared to normal tissues, negatively impacting patient prognosis. Through RNA sequencing and in vitro assays, we confirmed that the inhibition of neddylation modification could play a role in the regulation of various signaling pathways, thereby influencing the prognosis of KIRC. Moreover, our results underscore PSMB10 as a viable target for therapeutic intervention in KIRC, opening up novel pathways for the development of targeted treatment strategies. CONCLUSION: This study underscores the regulatory function and potential mechanism of neddylation modification on the phenotype of KIRC, identifying PSMB10 as a key regulatory target with a significant role in influencing the prognosis of KIRC.

3.
Mol Aspects Med ; 97: 101270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583268

RESUMEN

The onset of sarcopenia is intimately linked with aging, posing significant implications not only for individual patient quality of life but also for the broader societal healthcare framework. Early and accurate identification of sarcopenia and a comprehensive understanding of its mechanistic underpinnings and therapeutic targets paramount to addressing this condition effectively. This review endeavors to present a cohesive overview of recent advancements in sarcopenia research and diagnosis. We initially delve into the contemporary diagnostic criteria, specifically referencing the European Working Group on Sarcopenia in Older People (EWGSOP) 2 and Asian Working Group on Sarcopenia (AWGS) 2019 benchmarks. Additionally, we elucidate comprehensive assessment techniques for muscle strength, quantity, and physical performance, highlighting tools such as grip strength, chair stand test, dual-energy X-ray Absorptiometry (DEXA), bioelectrical impedance analysis (BIA), gait speed, and short physical performance battery (SPPB), while also discussing their inherent advantages and limitations. Such diagnostic advancements pave the way for early identification and unequivocal diagnosis of sarcopenia. Proceeding further, we provide a deep-dive into sarcopenia's pathogenesis, offering a thorough examination of associated signaling pathways like the Myostatin, AMP-activated protein kinase (AMPK), insulin/IGF-1 Signaling (IIS), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Each pathway's role in sarcopenia mediation is detailed, underscoring potential therapeutic target avenues. From a mechanistic perspective, the review also underscores the pivotal role of mitochondrial dysfunction in sarcopenia, emphasizing elements such as mitochondrial oxidative overload, mitochondrial biogenesis, and mitophagy, and highlighting their therapeutic significance. At last, we capture recent strides made in sarcopenia treatment, ranging from nutritional and exercise interventions to potential pharmacological and supplementation strategies. In sum, this review meticulously synthesizes the latest scientific developments in sarcopenia, aiming to enhance diagnostic precision in clinical practice and provide comprehensive insights into refined mechanistic targets and innovative therapeutic interventions, ultimately contributing to optimized patient care and advancements in the field.


Asunto(s)
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/terapia , Sarcopenia/metabolismo , Músculo Esquelético/metabolismo , Fuerza Muscular , Biomarcadores , Transducción de Señal , Envejecimiento , Animales
4.
Aging (Albany NY) ; 16(1): 246-266, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180750

RESUMEN

The Purinergic pathway is involved in a variety of important physiological processes in living organisms, and previous studies have shown that aberrant expression of the Purinergic pathway may contribute to the development of a variety of cancers, including kidney renal clear cell carcinoma (KIRC). The aim of this study was to delve into the Purinergic pathway in KIRC and to investigate its potential significance in prognostic assessment and clinical treatment. 33 genes associated with the Purinergic pathway were selected for pan-cancer analysis. Cluster analysis, targeted drug sensitivity analysis and immune cell infiltration analysis were applied to explore the mechanism of Purinergic pathway in KIRC. Using the machine learning process, we found that combining the Lasso+survivalSVM algorithm worked well for predicting survival accuracy in KIRC. We used LASSO regression to pinpoint nine Purinergic genes closely linked to KIRC, using them to create a survival model for KIRC. ROC survival curve was analyzed, and this survival model could effectively predict the survival rate of KIRC patients in the next 5, 7 and 10 years. Further univariate and multivariate Cox regression analyses revealed that age, grading, staging, and risk scores of KIRC patients were significantly associated with their prognostic survival and were identified as independent risk factors for prognosis. The nomogram tool developed through this study can help physicians accurately assess patient prognosis and provide guidance for developing treatment plans. The results of this study may bring new ideas for optimizing the prognostic assessment and therapeutic approaches for KIRC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pronóstico , Carcinoma de Células Renales/genética , Nomogramas , Neoplasias Renales/genética , Riñón
5.
Biomark Res ; 12(1): 5, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191508

RESUMEN

Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.

6.
Comput Struct Biotechnol J ; 23: 491-505, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38249783
7.
Front Immunol ; 14: 1276658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090562

RESUMEN

The growth and advancement of ccRCC are strongly associated with the presence of immune infiltration and the tumor microenvironment, comprising tumor cells, immune cells, stromal cells, vascular cells, myeloid-derived cells, and extracellular matrix (ECM). Nevertheless, as a result of the diverse and constantly evolving characteristics of the tumor microenvironment, prior advanced sequencing methods have frequently disregarded specific less prevalent cellular traits at varying intervals, thereby concealing their significance. The advancement and widespread use of single-cell sequencing technology enable us to comprehend the source of individual tumor cells and the characteristics of a greater number of individual cells. This, in turn, minimizes the impact of intercellular heterogeneity and temporal heterogeneity of the same cell on experimental outcomes. This review examines the attributes of the tumor microenvironment in ccRCC and provides an overview of the progress made in single-cell sequencing technology and its particular uses in the current focus of immune infiltration in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Matriz Extracelular , Células Mieloides , Tecnología , Microambiente Tumoral
8.
Aging (Albany NY) ; 15(20): 11313-11330, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847185

RESUMEN

Kidney renal clear cell carcinoma (KIRC), a common malignant tumor of the urinary system, is the most aggressive renal tumor subtype. Since the discovery of nuclear factor kappa B (NF-κB) in 1986, many studies have demonstrated abnormal NF-κB signaling is associated with the development of various cancers, including kidney renal clear cell carcinoma. In this study, the relationship between NF-κB and kidney renal clear cell carcinoma was confirmed using bioinformatics analysis. First, we explored the differential expression of copy number variation (CNV), single nucleotide variant (SNV), and messenger RNA (mRNA) in NF-κB-related genes in different types of cancer, as well as the impact on cancer prognosis and sensitivity to common chemotherapy drugs. Then, we divided the mRNA expression levels of NF-κB-related genes in KIRC patients into three groups through GSVA cluster analysis and explored the correlation between the NF-κB pathway and clinical data of KIRC patients, classical cancer-related genes, common anticancer drug responsiveness, and immune cell infiltration. Finally, 11 tumor-related genes were screened using least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model. In addition, we used the UALCAN and HPA databases to verify the protein levels of three key NF-κB-related genes (CHUK, IKGGB, and IKBKG) in KIRC. In conclusion, our study established a prognostic survival model based on NF-κB-related genes, which can be used to predict the prognosis of patients with KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , FN-kappa B/genética , Variaciones en el Número de Copia de ADN , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ARN Mensajero , Riñón , Quinasa I-kappa B
9.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37895855

RESUMEN

This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.

10.
J Cancer Res Clin Oncol ; 149(19): 17015-17026, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749329

RESUMEN

BACKGROUND: Renal clear cell carcinoma (RCC) is a common cancer in urinary system with increasing incidence. At present, targeted therapy and immunotherapy are the main therapeutic programs in clinical therapy. To develop novel drugs and provide new ideas for clinical therapy, the identification of potential ccRCC subtypes and potential target genes or pathways has become a current research focus. AIM: The aim of this study was to explore the underlying mechanisms of mitochondrial function in ccRCC. This regulatory pathway is closely related to tumor development and metastasis in ccRCC patients, and their abnormal changes may affect the prognosis of cancer patients. Therefore, we decided to construct a prognostic model of ccRCC patients based on mitochondrial regulatory genes, aiming to provide new methods and ideas for clinical therapy. RESULT: The 5-year survival prediction model based on iterative LASSO reached 0.746, and the cox model based on coxph reached C-index = 0.77, integrated c/D AUC = 0.61, and integrated brier score = 0.14. The rsf model based on randomForestSRC was built with C-index = 0.82, integrated c/D AUC = 0.69, and integrated brier score = 0.11. The results show that mitochondrial regulatory pathway is a potential target pathway for clinical therapy of ccRCC, which can provide guidelines for clinical targeted therapy, immunotherapy and other first-line therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Inmunoterapia , Aprendizaje Automático , Mitocondrias/genética , Neoplasias Renales/genética , Neoplasias Renales/terapia , Pronóstico
11.
ISME J ; 17(10): 1535-1551, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553473

RESUMEN

The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Microbioma Gastrointestinal/fisiología , Bacterias/genética , Bacterias/metabolismo , Neoplasias/terapia , Daño del ADN
12.
Pathol Res Pract ; 248: 154641, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37467634

RESUMEN

PURPOSE: To detect the expression of sphingosine kinase 1 (SPHK1) in clear cell renal cell carcinoma (ccRCC) and explore its biological role in the occurrence and development of ccRCC through regulation of fatty acid metabolism. METHODS: Using the Cancer Genome Atlas database, SPHK1 expression and its clinical significance were detected in clear cell renal cell carcinoma. Immunohistochemistry was performed to detect SPHK1 expression in RCC samples in our hospital. The connection between the SPHK1 levels and clinicopathological features of patients was assessed. Nile Red was used to detect fatty acids in cells. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to determine the effect of SPHK1 on renal cell viability and proliferation, respectively. Additionally, the effects of SPHK1 on the proliferation and metastasis of ccRCC were studied using wound healing and Transwell assays. Fatty acids were added exogenously in recovery experiments and western blotting was performed to determine the effect of SPHK1 on fatty acid metabolism in ccRCC. Finally, the effects of SPHK1 on tumor growth were investigated in a xenograft model. RESULTS: Bioinformatics analysis revealed that SPHK1 expression was upregulated in kidney RCC. OverSPHK1 expression was associated with poor prognosis for ccRCC patients. High SPHK1 expression was detected in human ccRCC. SPHK1 expression was related to clinicopathological features, such as tumor size and Furman grade. Additionally, cell proliferation, migration, and invasion were inhibited in ccRCC cells with low SPHK1 expression. In rescue experiments, proliferation, migration, and invasion were restored. In vivo, reduced SPHK1 levels correlated with lower expression of fatty acid synthase, stearoyl-CoA desaturase 1, and acetyl CoA carboxylase, and slowed tumor growth. CONCLUSIONS: SPHK1 is abnormally overexpressed in human ccRCC. Patients with ccRCC may benefit from treatments that target SPHK1, which may also serve as a prognostic indicator.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Metabolismo de los Lípidos , Riñón/patología , Pronóstico , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
13.
Oncol Res ; 31(3): 255-270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305384

RESUMEN

As a common tumor of the urinary system, the morbidity and mortality related to renal carcinoma, are increasing annually. Clear cell renal cell carcinoma (CCRCC) is the most common subtype of renal cell carcinoma, accounting for approximately 75% of the total number of patients with renal cell carcinoma. Currently, the clinical treatment of ccRCC involves targeted therapy, immunotherapy, and a combination of the two. In immunotherapy, PD-1/PD-L1 blocking of activated T cells to kill cancer cells is the most common treatment. However, as treatment progresses, some patients gradually develop resistance to immunotherapy. Meanwhile, other patients experience great side effects after immunotherapy, resulting in a survival status far lower than the expected survival rate. Based on these clinical problems, many researchers have been working on the improvement of tumor immunotherapy in recent years and have accumulated numerous research results. We hope to find a more suitable direction for future immunotherapy for ccRCC by combining these results and the latest research progress.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Neoplasias Renales/tratamiento farmacológico
14.
Front Cell Dev Biol ; 11: 1200466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305685

RESUMEN

Urologic cancers such as kidney, bladder, prostate, and uroepithelial cancers have recently become a considerable global health burden, and the response to immunotherapy is limited due to immune escape and immune resistance. Therefore, it is crucial to find appropriate and effective combination therapies to improve the sensitivity of patients to immunotherapy. DNA damage repair inhibitors can enhance the immunogenicity of tumor cells by increasing tumor mutational burden and neoantigen expression, activating immune-related signaling pathways, regulating PD-L1 expression, and reversing the immunosuppressive tumor microenvironment to activate the immune system and enhance the efficacy of immunotherapy. Based on promising experimental results from preclinical studies, many clinical trials combining DNA damage repair inhibitors (e.g., PARP inhibitors and ATR inhibitors) with immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors) are underway in patients with urologic cancers. Results from several clinical trials have shown that the combination of DNA damage repair inhibitors with immune checkpoint inhibitors can improve objective rates, progression-free survival, and overall survival (OS) in patients with urologic tumors, especially in patients with defective DNA damage repair genes or a high mutational load. In this review, we present the results of preclinical and clinical trials of different DNA damage repair inhibitors in combination with immune checkpoint inhibitors in urologic cancers and summarize the potential mechanism of action of the combination therapy. Finally, we also discuss the challenges of dose toxicity, biomarker selection, drug tolerance, drug interactions in the treatment of urologic tumors with this combination therapy and look into the future direction of this combination therapy.

15.
Biotechnol Genet Eng Rev ; : 1-16, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243586

RESUMEN

Hepatocellular carcinoma (HCC) is an intractable malignant disease with high incidence rate annually. LincRNA PRNCR1 has been confirmed as a tumor supporter, while its functions in HCC remain unclear. This study aims to explore the mechanism of LincRNA PRNCR1 in hepatocellular carcinoma. The qRT-PCR was applied to the quantification of non-coding RNAs. Cell counting Kit-8 (CCK-8), Transwell assay and flow cytometry assay were applied to reflect the change in the phenotype of HCC cells. Moreover, the databases including Targetscan and Starbase and dual-luciferase reporter assay were applied to investigate the interaction of the genes. The western blot was applied to detect the abundance of proteins and the activity of the related pathways. Elevated LincRNA PRNCR1 was dramatically upregulated in HCC pathological samples and cell lines. MiR-411-3p served as a target of LincRNA PRNCR1, and decreased miR-411-3p was found in the clinical samples and cell lines. LincRNA PRNCR1 downregulation could induce the expression of miR-411-3p, and LincRNA PRNCR1 silence could impede the malignant behaviors via increasing the abundance of miR-411-3p. Zinc finger E-box binding homeobox 1 (ZEB1) was confirmed as a target of miR-411-3p, which remarkably upregulated in HCC cells, and ZEB1 upregulation could significantly rescue the effect of miR-411-3p on malignant behaviors of HCC cells. Moreover, LincRNA PRNCR1 was confirmed to involve the Wnt/ß-catenin pathway via regulating miR-411-3p/ZEB1 axis. This study suggested that LincRNA PRNCR1 could drive the malignant progression of HCC via regulating miR-411-3p/ZEB1 axis.

17.
Front Genet ; 14: 1091223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911396

RESUMEN

During the last decade, non-invasive methods such as liquid biopsy have slowly replaced traditional imaging and invasive pathological methods used to diagnose and monitor cancer. Improvements in the available detection methods have enabled the early screening and diagnosis of solid tumors. In addition, advances in early detection methods have made the continuous monitoring of tumor progression using repeat sampling possible. Previously, the focus of liquid biopsy techniques included the following: 1) the isolation of circulating tumor cells, circulating tumor DNA, and extracellular tumor vesicles from solid tumor cells in the patient's blood; in addition to 2) analyzing genomic and proteomic data contained within the isolates. Recently, there has been a rapid devolvement in the techniques used to isolate and analyze molecular markers. This rapid evolvement in detection techniques improves their accuracy, especially when few samples are available. In addition, there is a tremendous expansion in the acquisition of samples and targets for testing; solid tumors can be detected from blood and other body fluids. Test objects have also expanded from samples taken directly from cancer to include indirect objects affected in cancer development. Liquid biopsy technology has limitations. Even so, this detection technique is the key to a new phase of oncogenetics. This review aims to provide an overview of the current advances in liquid biopsy marker selection, isolation, and detection methods for solid tumors. The advantages and disadvantages of liquid biopsy technology will also be explored.

18.
Front Genet ; 14: 1133020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936418

RESUMEN

Ferroptosis is a new type of cell death characterized by damage to the intracellular microenvironment, which causes the accumulation of lipid hydroperoxide and reactive oxygen species to cause cytotoxicity and regulated cell death. Non-coding RNAs (ncRNAs) play an important role in gene expression at the epigenetic, transcriptional, and post-transcriptional levels through interactions with different DNAs, RNAs, or proteins. Increasing evidence has shown that ferroptosis-related ncRNAs are closely related to the occurrence and progression of several diseases, including urological malignancies. Recently, the role of ferroptosis-associated ncRNAs (long non-coding RNAs, micro RNAs, and circular RNAs) in the occurrence, drug resistance, and prognosis of urological malignancies has attracted widespread attention. However, this has not yet been addressed systematically. In this review, we discuss this issue as much as possible to expand the knowledge and understanding of urological malignancies to provide new ideas for exploring the diagnosis and treatment of urological malignancies in the future. Furthermore, we propose some challenges in the clinical application of ferroptosis-associated ncRNAs.

19.
Front Oncol ; 13: 1077309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969076

RESUMEN

Purpose: The mitogen-activated protein kinase (MAPK) signaling pathway is often studied in oncology as the most easily mentioned signaling pathway. This study aims to establish a new prognostic risk model of MAPK pathway related molecules in kidney renal clear cell carcinoma (KIRC) based on genome and transcriptome analysis. Methods: In our study, RNA-seq data were acquired from the KIRC dataset of The Cancer Genome Atlas (TCGA) database. MAPK signaling pathway-related genes were obtained from the gene enrichment analysis (GSEA) database. We used "glmnet" and the "survival" extension package for LASSO (Least absolute shrinkage and selection operator) regression curve analysis and constructed a prognosis-related risk model. The survival curve and the COX regression analysis were used the "survival" expansion packages. The ROC curve was plotted using the "survival ROC" extension package. We then used the "rms" expansion package to construct a nomogram plot. We performed a pan-cancer analysis of CNV (copy number variation), SNV (single nucleotide variant), drug sensitivity, immune infiltration, and overall survival (OS) of 14 MAPK signaling pathway-related genes using several analysis websites, such as GEPIA website and TIMER database. Besides, the immunohistochemistry and pathway enrichment analysis used The Human Protein Atlas (THPA) database and the GSEA method. Finally, the mRNA expression of risk model genes in clinical renal cancer tissues versus adjacent normal tissues was further verified by real-time quantitative reverse transcription (qRT-PCR). Results: We performed Lasso regression analysis using 14 genes and created a new KIRC prognosis-related risk model. High-risk scores suggested that KIRC patients with lower-risk scores had a significantly worse prognosis. Based on the multivariate Cox analysis, we found that the risk score of this model could serve as an independent risk factor for KIRC patients. In addition, we used the THPA database to verify the differential expression of proteins between normal kidney tissues and KIRC tumor tissues. Finally, the results of qRT-PCR experiments suggested large differences in the mRNA expression of risk model genes. Conclusions: This study constructs a KIRC prognosis prediction model involving 14 MAPK signaling pathway-related genes, which is essential for exploring potential biomarkers for KIRC diagnosis.

20.
Front Immunol ; 13: 1017400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466838

RESUMEN

Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Muerte Celular Regulada , Humanos , Muerte Celular Inmunogénica , Recuento de Células , Alarminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...