Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 115(5): 1492-1504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38476086

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as important molecules and potential new targets for human cancers. This study investigates the function of lncRNA CTBP1 antisense RNA (CTBP1-AS) in prostate cancer (PCa) and explores the entailed molecular mechanism. Aberrantly expressed genes potentially correlated with PCa progression were probed using integrated bioinformatics analyses. A cohort of 68 patients with PCa was included, and their tumor and para-cancerous tissues were collected. CTBP1-AS was highly expressed in PCa tissues and cells and associated with poor patient prognosis. By contrast, tumor protein p63 (TP63) and S100 calcium binding protein A14 (S100A14) were poorly expressed in the PCa tissues and cells. CTBP1-AS did not affect TP63 expression; however it blocked the TP63-mediated transcriptional activation of S100A14, thereby reducing its expression. CTBP1-AS silencing suppressed proliferation, apoptosis resistance, migration, invasion, and tumorigenicity of PCa cell lines, while its overexpression led to inverse results. The malignant phenotype of cells was further weakened by TP63 overexpression but restored following artificial S100A14 silencing. In conclusion, this study demonstrates that CTBP1-AS plays an oncogenic role in PCa by blocking TP63-mediated transcriptional activation of S100A14. This may provide insight into the management of PCa.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , ARN Largo no Codificante , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Humanos , Masculino , Ratones , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400452

RESUMEN

Multi-view stereo methods utilize image sequences from different views to generate a 3D point cloud model of the scene. However, existing approaches often overlook coarse-stage features, impacting the final reconstruction accuracy. Moreover, using a fixed range for all the pixels during inverse depth sampling can adversely affect depth estimation. To address these challenges, we present a novel learning-based multi-view stereo method incorporating attention mechanisms and an adaptive depth sampling strategy. Firstly, we propose a lightweight, coarse-feature-enhanced feature pyramid network in the feature extraction stage, augmented by a coarse-feature-enhanced module. This module integrates features with channel and spatial attention, enriching the contextual features that are crucial for the initial depth estimation. Secondly, we introduce a novel patch-uncertainty-based depth sampling strategy for depth refinement, dynamically configuring depth sampling ranges within the GRU-based optimization process. Furthermore, we incorporate an edge detection operator to extract edge features from the reference image's feature map. These edge features are additionally integrated into the iterative cost volume construction, enhancing the reconstruction accuracy. Lastly, our method is rigorously evaluated on the DTU and Tanks and Temples benchmark datasets, revealing its low GPU memory consumption and competitive reconstruction quality compared to other learning-based MVS methods.

3.
J Phys Chem Lett ; 15(6): 1668-1676, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315425

RESUMEN

Eu2+-based lead-free metal halide nanocrystals (LFMH NCs), including CsEuCl3 NCs and CsX:Eu2+ NCs (X = Cl or Br), exhibit highly efficient narrow-band blue photoluminescence, making them competitive candidates for next-generation lighting and displays. However, the growing mechanism of the aforementioned NCs lacks in-depth study, which hinders the development of Eu2+-based nanomaterials. Herein, we demonstrate the colloidal synthesis of CsBr:Eu2+ NCs based on an air-stable europium source. The NCs show deep blue photoluminescence centered at 444 nm, with a maximum photoluminescence quantum yield (PLQY) reaching 53.4% and a fwhm of 30 nm. We further reveal the mechanism that determines CsBr host growth and Eu2+ doping in CsBr:Eu2+ nanocrystals, especially dopant trapping and self-purification, that determine the PLQY level. Pure white, warm white, and cold white LEDs are fabricated based on CsBr:Eu2+ NCs, red and green phosphors, and their performance suits the needs of high-quality lighting.

4.
Small ; 18(22): e2201820, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502139

RESUMEN

The organic-inorganic halide perovskite solar cell (PerSC) is the state-of-the-art emerging photovoltaic technology. However, the environmental water/moisture and temperature-induced intrinsic degradation and phase transition of perovskite greatly retard the commercialization process. Herein, a dual-functional organic ligand, 4,7-bis((4-vinylbenzyl)oxy)-1,10-phenanthroline (namely, C1), with crosslinkable styrene side-chains and chelatable phenanthroline backbone, synthesized via a cost-effective Williamson reaction, is introduced for collaborative electrode interface and perovskite grain boundaries (GBs) engineering. C1 can chemically chelate with Sn4+ in the SnO2 electron transport layer and Pb2+ in the perovskite layer via coordination bonds, suppressing nonradiative recombination caused by traps/defects existing at the interface and GBs. Meanwhile, C1 enables in situ crosslinking via thermal-initiated polymerization to form a hydrophobic and stable polymer network, freezing perovskite morphology, and resisting moisture degradation. Consequently, through collaborative interface-grain engineering, the resulting PerSCs demonstrate high power conversion efficiency of 24.31% with excellent water/moisture and thermal stability. The findings provide new insights of collaborative interface-grain engineering via a crosslinkable and chelatable organic ligand for achieving efficient and stable PerSCs.

5.
Sci China Life Sci ; 65(7): 1413-1429, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34826094

RESUMEN

Although the functional parameters of microRNAs (miRNAs) have been explored to some extent, the roles of these molecules in coronavirus infection and the regulatory mechanism of miRNAs in virus infection are still unclear. Transmissible gastroenteritis virus (TGEV) is an enteropathgenic coronavirus and causes high morbidity and mortality in suckling piglets. Here, we demonstrated that microRNA-27b-3p (miR-27b-3p) suppressed TGEV replication by directly targeting porcine suppressor of cytokine signaling 6 (SOCS6), while TGEV infection downregulated miR-27b-3p expression in swine testicular (ST) cells and in piglets. Mechanistically, the decrease of miR-27b-3p expression during TGEV infection was mediated by the activated inositol-requiring enzyme 1 (IRE1) pathway of the endoplasmic reticulum (ER) stress. Further studies showed that when ER stress was induced by TGEV, IRE1 acted as an RNase activated by autophosphorylation and unconventionally spliced mRNA encoding a potent transcription factor, X-box-binding protein 1 (Xbp1s). Xbp1s inhibited the transcription of miR-27 and ultimately reduced the production of miR-27b-3p. Therefore, our findings indicate that TGEV inhibits the expression of an anti-coronavirus microRNA through the IRE1 pathway and suggest a novel way in which coronavirus regulates the host cell response to infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , MicroARNs , Virus de la Gastroenteritis Transmisible , Animales , Antivirales , Línea Celular , Coronavirus/genética , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Porcinos , Virus de la Gastroenteritis Transmisible/genética
6.
Small ; 17(44): e2103497, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34622540

RESUMEN

Layer-by-layer (LBL) deposition strategy enabling favorable vertical phase distributions has been regarded as promising candidates for constructing high-efficient organic photovoltaic (OPV) cells. However, solid additives with the merits of good stability and reproducibility have been rarely used to fine-tune the morphology of the LBL films for improved efficiency and stability. Herein, hierarchical morphology control in LBL OPV is achieved via a dual functional solid additive. Series of LBL devices are fabricated by introducing the solid additive individually or simultaneously to the donor or acceptor layer to clarify the functions of additives. Additive in the donor layer can facilitate the formation of preferable vertical component distribution, and that in the acceptor layer will enhance the molecular crystallinity for better charge transport properties. The optimized morphology ultimately contributed to high PCEs of 16.4% and 17.4% in the binary and quaternary LBL devices. This reported method provides an alternative way to controllably manipulate the morphology of LBL OPV cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA