Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 77, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514679

RESUMEN

The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10-6 cm-1·Hz-1/2.

2.
Photoacoustics ; 36: 100585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38313583

RESUMEN

We report on a photoacoustic sensor system based on a differential photoacoustic cell to detect the concentration of CO impurities in hydrogen. A DFB-QCL laser with a central wavelength of 4.61 µm was employed as an exciting source with an optical power of 21 mW. Different concentrations of CO gas mixed with pure hydrogen were injected into the photoacoustic cell to test the linear response of the photoacoustic signal to the CO concentration. The stability of the long-term operation was verified by Allan-Werle deviation analysis. The minimum detection limit (MDL, SNR=1) results 8 ppb at 1 s and reaches a sub-ppb level at 100 s of integration time. Dynamic response of the system is linear and has been tested up to the concentration of 6 ppm. Saturation conditions are expected to be reached for CO concentration larger than 100 ppm.

3.
Opt Express ; 32(1): 987-1002, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175118

RESUMEN

In this paper, an end-to-end methane gas detection algorithm based on transformer and multi-layer perceptron (MLP) for tunable diode laser absorption spectroscopy (TDLAS) is presented. It consists of a Transformer-based U-shaped Neural Network (TUNN) filtering algorithm and a concentration prediction network (CPN) based on MLP. This algorithm employs an end-to-end architectural design to extract information from noisy transmission spectra of methane and derive the CH4 concentrations from denoised spectra, without intermediate steps. The results demonstrate the superiority of the proposed TUNN filtering algorithm over other typically employed digital filters. For concentration prediction, the determination coefficient (R2) reached 99.7%. Even at low concentrations, R2 remained notably high, reaching up to 89%. The proposed algorithm results in a more efficient, convenient, and accurate spectral data processing for TDLAS-based gas sensors.

4.
Photoacoustics ; 35: 100580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163005

RESUMEN

Folded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals. To assess the performance of FO-QEPA-PTS, 1 % acetylene is selected as the analyte gas and the 2f signals produced by the photoacoustic, the photothermal, and their hybrid effects are measured. Comparative analysis against QEPAS and QEPTS reveals signal gain factors of ∼ 79 and ∼ 14, respectively, when these laser beams created by MPC excite the QTF operating at fundamental resonance mode in phase. In the FO-QEPA-PTS signal, the proportions of the photoacoustic and the photothermal effects induced by the multiple beams are ∼7 % and 93 %, respectively.

5.
Anal Chem ; 96(1): 547-553, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38155434

RESUMEN

Hydrogen (H2) fuel cells have been developed as an environmentally benign, low-carbon, and efficient energy option in the current period of promoting low-carbon activities, which offer a compelling means to reduce carbon emissions. However, the presence of carbon monoxide (CO) impurities in H2 may potentially damage the fuel cell's anode. As a result, monitoring of the CO levels in fuel cells has become a significant area of research. In this paper, a novel photoacoustic sensor is developed based on photoacoustic heterodyne technology. The sensor combines a 4.61 µm mid-infrared quantum cascade laser with a low-noise differential photoacoustic cell. This combination enables fast, real-time online detection of CO impurity concentrations in H2. Notably, the sensor requires no wavelength locking to monitor CO online in real-time and produces a single effective signal with a period of only 15 ms. Furthermore, the sensor's performance was thoroughly evaluated in terms of detection sensitivity, linearity, and long-term stability. The minimum detection limit of 11 ppb was obtained at an optimal time constant of 1 s.

6.
Photoacoustics ; 33: 100557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021284

RESUMEN

We present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of ammonia (NH3) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with a mid-infrared quantum cascade laser emitting at 9.55 µm. The custom QTF with a hammer-shaped prong geometry which is also modified by surface grooves is designed as the acoustic transducer, providing a low resonance frequency of 9.5 kHz and a high-quality factor of 10263 at atmospheric pressure. In addition, a temperature of 50 °C and a large gas flow rate of 260 standard cubic centimeters per minute (sccm) are applied to mitigate the adsorption and desorption effect arising from the polarized molecular of NH3. With 80-mW optical power and 300-ms lock-in integration time, the detection limit is achieved to be 2.2 ppb which is the best value reported in the literature so far for NH3 QEPAS sensors, corresponding to a normalized noise equivalent absorption coefficient of 1.4 × 10-8 W cm-1 Hz-1/2. A five-day continuous monitoring for atmospheric NH3 is performed, verifying the stability and robustness of the presented QEPAS-based NH3 sensor.

7.
Photoacoustics ; 33: 100553, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021294

RESUMEN

We present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (H2S) in sulfur hexafluoride (SF6). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.58 µm near-infrared distributed feedback (DFB) laser with an optical power of 30 mW serves as the excitation source. The sensor achieved a minimum detection limit (MDL) of ∼300 ppb at an integration time of 300 ms, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 3.96 × 10-9 W·cm-1·Hz-1/2. By extending the integration time to 100 s, the MDL can be reduced to ∼25 ppb. The sensor exhibits a response time of ∼1 min for a gas flow rate of 70 sccm.

8.
Adv Sci (Weinh) ; 10(30): e2302703, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37697645

RESUMEN

Single-atom nanozymes (SAzymes) with high catalytic activity exhibit the potential to disequilibrate the reactive oxygen metabolic balance in the tumor microenvironment (TME), which contains several endogenous reductive substances such as glutathione (GSH). Herein, a novel nano-assembly (CDs@Pt SAs/NCs@DOX) is first constructed using drug-primed platinum (Pt) single-atom or nanocluster nanozymes with a Pt loading of 34.8%, which exhibits prominent dual enzymatic activities to mimic peroxidase (POD) and glutathione oxidase (GSHOx). The unique GSHOx-like activity can efficiently scavenge GSH with a relatively low Km (1.04 mm) and high Vmax (7.46 × 10-6  m s-1 ), thus avoiding single oxygen (1 O2 ) depletion. CDs@Pt SAs/NCs@DOX simultaneously demonstrates low-temperature photothermal therapy and TME- or laser-controlled disassembly and drug release, which can effectively regulate cellular redox homeostasis and achieve high tumor growth inhibition. These outcomes may provide promising strategies for the preparation of Pt SAzymes with multiple activities and variable-sized nano-assemblies, allowing for broader applications of SAzymes and nano-assemblies in the biomedical field.


Asunto(s)
Neoplasias , Platino (Metal) , Humanos , Homeostasis , Neoplasias/tratamiento farmacológico , Glutatión , Oxígeno , Oxidación-Reducción , Microambiente Tumoral
9.
Photoacoustics ; 31: 100518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325395

RESUMEN

Here we report on a study of the non-radiative relaxation dynamic of 12CH4 and 13CH4 in wet nitrogen-based matrixes by using the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The dependence of the QEPAS signal on pressure at fixed matrix composition and on H2O concentration at fixed pressure was investigated. We demonstrated that QEPAS measurements can be used to retrieve both the effective relaxation rate in the matrix, and the V-T relaxation rate associated to collisions with nitrogen and water vapor. No significant differences in measured relaxation rates were observed between the two isotopologues.

10.
Photoacoustics ; 31: 100479, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255964

RESUMEN

In this work, a comparison between Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) and Beat Frequency-QEPAS (BF-QEPAS) techniques for environmental monitoring of pollutants is reported. A spectrophone composed of a T-shaped Quartz Tuning Fork (QTF) coupled with resonator tubes was employed as a detection module. An interband cascade laser has been used as an exciting source, allowing the targeting of two NO absorption features, located at 1900.07 cm-1 and 1900.52 cm-1, and a water vapor absorption feature, located at 1901.76 cm-1. Minimum detection limits of 90 ppb and 180 ppb were achieved with QEPAS and BF-QEPAS techniques, respectively, for NO detection. The capability to detect multiple components in the same gas mixture using BF-QEPAS was also demonstrated.

11.
Photoacoustics ; 30: 100475, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37007859

RESUMEN

Photoacoustic cells play an important role in photoacoustic trace gas analysis, as they can amplify the photoacoustic signal and improve detection limit. Therefore, the structure and dimensional design of a photoacoustic cell are very important for the performance of a photoacoustic sensing system. In this review, the theory and the method of acousto-electric analogy for the photoacoustic cell design are discussed in detail. Starting from the basics of the acousto-electric analogy, the counterparts of acoustic elements in electric circuits are first deduced from the analogies between acoustic and electric networks. Subsequently, an acoustic transmission line model is reviewed, and the model is demonstrated to optimize the geometry of the photoacoustic cell and investigate the properties of the cell. Finally, using the acousto-electric analogy method, the equivalent electric circuits of several types of photoacoustic cells, such as the Helmholtz resonant photoacoustic cell, the H-type resonant photoacoustic cell, the differential photoacoustic cell, etc., are presented.

12.
Anal Chem ; 95(14): 6138-6144, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36987565

RESUMEN

A noninvasive method for disease diagnosis that does not require complex specialized laboratory facilities and chemical reagents is particularly attractive in the current medical environment. Here, we develop a noninvasive skin respiration sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) that can monitor the skin elimination rate of carbon dioxide (CO2). A 3.8 mW distributed feedback laser emitting at 2.0 µm is used as an excitation source, and a three-dimensional (3D)-printed acoustic detection module is designed to apply to the skin as a sensor head. The performance of the noninvasive skin respiration sensor is assessed in terms of detection sensitivity, linearity, long-term stability, and water effect. A minimum detection limit of 35 ppb is achieved at the optimal integration time of 670 s. The skin respiration measurements from eight healthy volunteers are recorded, and the real-time results are analyzed.


Asunto(s)
Dióxido de Carbono , Técnicas Fotoacústicas , Humanos , Cuarzo/química , Técnicas Fotoacústicas/métodos , Rayos Láser , Análisis Espectral/métodos
13.
Opt Express ; 31(4): 6974-6981, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823943

RESUMEN

A sulfur dioxide (SO2) gas sensor based on the photoacoustic spectroscopy technology in a sulfur hexafluoride (SF6) gas matrix was demonstrated for SF6 decomposition components monitoring in the power system. A passive Q-switching laser diode (LD) pumped all-solid-state 266 nm deep-ultraviolet laser was exploited as the laser excitation source. The photoacoustic signal amplitude is linear related to the incident optical power, whereas, a random laser power jitter is inevitable since the immature laser manufacturing technology in UV spectral region. A compact laser power stabilization system was developed for better sensor performance by adopting a photodetector, a custom-made internal closed-loop feedback controller and a Bragg acousto-optic modulator (AOM). The out-power stability of 0.04% was achieved even though the original power stability was 0.41% for ∼ 2 hours. A differential two-resonator photoacoustic cell (PAC) was designed for weak photoacoustic signal detection. The special physical constants of SF6 buffer gas induced a high-Q factor of 85. A detection limit of 140 ppbv was obtained after the optimization, which corresponds to a normalized noise equivalent absorption coefficient of 3.2 × 10-9 cm-1WHz-1/2.

14.
Photoacoustics ; 29: 100448, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36654961

RESUMEN

A gas sensor based on light-induced thermo-elastic spectroscopy (LITES) capable to detect methane (C1) and ethane (C2) in a wide concentration range, from percent down to part-per-billion (ppb), is here reported. A novel approach has been implemented, exploiting a compact sensor design that accommodates both a custom 9.8 kHz quartz tuning fork (QTF) used as photodetector and the gas sample in the same housing. The resulting optical pathlength was only 2.5 cm. An interband cascade laser (ICL) with emission wavelength of 3.345 µm was used to target absorption features of C1 and C2. The effects of high concentration analytes on sensor response were firstly investigated. C1 concentration varied from 1% to 10%, while C2 concentration varied from 0.1% to 1%. These ranges were selected to retrace the typical natural gas composition in a 1:10 nitrogen dilution. The LITES sensor was calibrated for both the gas species independently and returned nonlinear but monotonic responses for the two analytes. These univariate calibrations were used to retrieve the composition of C1-C2 binary mixtures with accuracy higher than 98%, without the need for further data analysis. Minimum detection limits of ∼650 ppb and ∼90 ppb were achieved at 10 s of integration time for C1 and C2, respectively, demonstrating the capability of the developed LITES sensor to operate with concentration ranges spanning over 6 orders of magnitude.

15.
Photoacoustics ; 29: 100438, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36582842

RESUMEN

The increase in fatal accidents and chronic illnesses caused by hydrogen sulfide (H2S) exposure occurring in various workplaces is pushing the development of sensing systems for continuous and in-field monitoring of this hazardous gas. We report here on the design and realization of a Near-IR quartz-enhanced photoacoustic sensor (QEPAS) for H2S leaks detection. H2S QEPAS signal was measured in matrixes containing up to 1 % of methane (CH4) and nitrogen (N2) which were chosen as the laboratory model environment for leakages from oil and gas wells or various industrial processes where H2S and CH4 can leak simultaneously. An investigation of the influence of CH4 on H2S relaxation and photoacoustic generation was proposed in this work and the sensor performances were carefully assessed with respect to CH4 content in the mixture. We demonstrated the high selectivity, with no cross talk between H2S, H2O and CH4 absorption lines, high sensitivity, and fast response time of the developed sensor, achieving a minimum detection limit (MDL) of 2.5 ppm for H2S with 2 s lock-in integration time. The employed 2.6 µm laser allowed us to employ the sensor also for CH4 detection, achieving an MDL of 85 ppm. The realized QEPAS sensor lends itself to the development of a portable and compact device for industrial monitoring.

16.
Molecules ; 27(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235042

RESUMEN

A photoacoustic detection module based on a gold-plated photoacoustic cell was reported in this manuscript to measure hydrogen sulfide (H2S) gas in sewers. A 1582 nm distributed feedback (DFB) diode laser was employed as the excitation light source of the photoacoustic sensor. Operating pressure within the photoacoustic cell and laser modulation depth were optimized at room temperature, and the long-term stability of the photoacoustic sensor system was analyzed by an Allan-Werle deviation analysis. Experimental results showed that under atmospheric pressure and room temperature conditions, the photoacoustic detection module exhibits a sensitivity of 11.39 µV/ppm of H2S and can reach a minimum detection limit (1σ) of 140 ppb of H2S with an integration time of 1 s. The sensor was tested for in-field measurements by sampling gas in the sewer near the Shanxi University canteen: levels of H2S of 81.5 ppm were measured, below the 100 ppm limit reported by the Chinese sewer bidding document.


Asunto(s)
Sulfuro de Hidrógeno , Erbio , Oro , Humanos , Sulfuro de Hidrógeno/análisis , Láseres de Semiconductores , Análisis Espectral/métodos
17.
Photoacoustics ; 27: 100389, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36068797

RESUMEN

All-optical light-induced thermoacoustic spectroscopy (AO-LITS) is reported for the first time for highly sensitive and selective gas sensing, in which a commercial standard quartz tuning fork (QTF) is employed as a photothermal detector. The vibration of the QTF was measured by the highly sensitive fiber-optic Fabry-Pérot (FP) interferometry (FPI) technique, instead of the piezoelectric detection in the conventional LITS. To improve the stability of the sensor system, a compact QTF-based fiber-optic FPI module is fabricated by 3D printing technique and a dual-wavelength demodulation method with the ellipse-fitting differential-cross-multiplication algorithm (DW-EF-DCM) is exploited for the FPI measurement. The all-optical detection scheme has the advantages of remote detection and immunity to electromagnetic interference. A minimum detection limit (MDL) of 422 ppb was achieved for hydrogen sulfide (H2S), which was ~ 3 times lower than a conventional electrical LITS sensor system. The AO-LITS can provide a promising approach for remote and non-contact gas sensing in the whole infrared spectral region.

18.
Photoacoustics ; 27: 100388, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36068802

RESUMEN

A breath sensor for real-time measurement of human exhaled carbon monoxide is reported. This breath sensor is based on a novel photoacoustic heterodyne gas sensing technique, which combines the conventional photoacoustic spectroscopy with the beat-frequency detection algorithm, thus offering a fast response time and a convenient optical alignment, as well as eliminating the needs for frequency calibration and wavelength locking. The principle of photoacoustic heterodyne gas sensing was explained in detail. The performance of the photoacoustic heterodyne breath sensor was evaluated in terms of minimum detection limit, response time, and linearity. The exhaled carbon monoxide levels of eight volunteers were measured and the results demonstrate the reliability and feasibility of this breath sensor.

19.
Opt Lett ; 47(17): 4556-4559, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048703

RESUMEN

In this Letter, clamp-type quartz tuning fork enhanced photoacoustic spectroscopy (Clamp-type QEPAS) is proposed and realized through the design, realization, and testing of clamp-type quartz tuning forks (QTFs) for photoacoustic gas sensing. The clamp-type QTF provides a wavefront-shaped aperture with a diameter up to 1 mm, while keeping Q factors > 104. This novel, to the best of our knowledge, design results in a more than ten times increase in the area available for laser beam focusing for the QEPAS technique with respect to a standard QTF. The wavefront-shaped clamp-type prongs effectively improve the acoustic wave coupling efficiency. The possibility to implement a micro-resonator system for clamp-type QTF is also investigated. A signal-to-noise enhancement of ∼30 times has been obtained with a single-tube acoustic micro resonator length of 8 mm, ∼20% shorter than the dual-tube micro-resonator employed in a conventional QEPAS system.


Asunto(s)
Cuarzo , Cuarzo/química , Análisis Espectral/métodos
20.
Gland Surg ; 11(4): 742-750, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531104

RESUMEN

Background: Human epidermal growth factor receptor 2 (HER2) inhibitors play a vital role in the treatment of HER2-positive breast cancer. Numerous studies have shown that traditional HER2 inhibitors and chemotherapeutics such as albumin-paclitaxel, liposomal doxorubicin, and cyclophosphamide (TAC regimen) have different degrees of cardiotoxicity. Pyrotinib is a novel small-molecule HER2 inhibitor and has no cardiotoxicity. Here, the purpose of this study was to investigate the cardiac safety of pyrotinib with TAC regimen for HER2-positive breast cancer. Methods: In this study, 22 patients with stage I-IIIA HER2-positive breast cancer were screened, enrolled, and assigned to receive either neoadjuvant or postoperative adjuvant treatment with pyrotinib (320-400 mg, once daily) combined with TAC (albumin-paclitaxel 260 mg/m2, liposomal doxorubicin 20 mg/m2, cyclophosphamide 600 mg/m2) from December 2019 to May 2021. Patients' heart function was monitored using electrocardiogram, echocardiogram, and serological indicators. ST segment and T wave change, left ventricular ejection fraction (LVEF, %), N-terminal pro-B-type natriuretic peptide (NT-pro-BNP), creatine kinase (CK), creatine kinase myoglobin band (CK-MB), together with patients' weight, white blood cells (WBC), red blood cells (RBC), platelets, plasma lipid, and glucose were recorded. Results: Before and after the 2nd, 4th, and 6th cycles of treatment, the incidence of abnormal electrocardiogram of patients enrolled in the neoadjuvant treatment group was 36.4%, 27.3%, 27.3%, and 27.3%, respectively, while in the postoperative adjuvant treatment, the incidence was 45.5%, 36.4%, 36.4%, and 36.4%, respectively. LVEF before and after treatment in the neoadjuvant chemotherapy group was 65.36%±2.25% and 65.00%±2.15% (t=1.305, P=0.221), while in the postoperative adjuvant treatment group, LVEF was 66.27%±2.69% and 65.18%±1.89% (t=1.359, P=0.204). Pyrotinib combined with a TAC regimen may have induced a decrease in RBC. No obvious abnormality was found in the level of NT-pro-BNP, CK, CK-MB, patients' weight, WBC, platelets, plasma lipid, or glucose in all enrolled patients during the entire treatment process. Conclusions: Our findings indicated that neither neoadjuvant nor postoperative adjuvant treatment using pyrotinib combined with a TAC regimen to treat patients with HER2-positive breast cancer increased cardiotoxicity. However, the treatment may have induced a decrease in RBC and further research is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA