Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
World J Surg Oncol ; 22(1): 240, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244533

RESUMEN

BACKGROUND: Postoperative recurrence is a vital reason for poor 5-year overall survival in hepatocellular carcinoma (HCC) patients. The ADV score is considered a parameter that can quantify HCC aggressiveness. This study aimed to identify HCC patients at high-risk of recurrence early using the ADV score. METHODS: The medical data of consecutive HCC patients undergoing hepatectomy from The First Affiliated Hospital of Nanjing Medical University (TFAHNJMU) and Nanjing Drum Tower Hospital (NJDTH) were retrospectively reviewed. Based on the status of microvascular invasion and the Edmondson-Steiner grade, HCC patients were divided into three groups: low-risk group (group 1: no risk factor exists), medium-risk group (group 2: one risk factor exists), and high-risk group (group 3: coexistence of two risk factors). In the training cohort (TFAHNJMU), the R package nnet was used to establish a multi-categorical unordered logistic regression model based on the ADV score to predict three risk groups. The Welch's T-test was used to compare differences in clinical variables in three predicted risk groups. NJDTH served as an external validation center. At last, the confusion matrix was developed using the R package caret to evaluate the diagnostic performance of the model. RESULTS: 350 and 405 patients from TFAHNJMU and NJDTH were included. HCC patients in different risk groups had significantly different liver function and inflammation levels. Density maps demonstrated that the ADV score could best differentiate between the three risk groups. The probability curve was plotted according to the predicted results of the multi-categorical unordered logistic regression model, and the best cut-off values of the ADV score were as follows: low-risk ≤ 3.4 log, 3.4 log < medium-risk ≤ 5.7 log, and high-risk > 5.7 log. The sensitivities of the ADV score predicting the high-risk group (group 3) were 70.2% (99/141) and 78.8% (63/80) in the training and external validation cohort, respectively. CONCLUSION: The ADV score might become a valuable marker for screening patients at high-risk of HCC recurrence with a cut-off value of 5.7 log, which might help surgeons, pathologists, and HCC patients make appropriate clinical decisions.


Asunto(s)
Carcinoma Hepatocelular , Hepatectomía , Neoplasias Hepáticas , Recurrencia Local de Neoplasia , Humanos , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/diagnóstico , Estudios Retrospectivos , Femenino , Masculino , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/epidemiología , Persona de Mediana Edad , Factores de Riesgo , Estudios de Seguimiento , Pronóstico , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Detección Precoz del Cáncer/métodos , Invasividad Neoplásica , Tasa de Supervivencia , Anciano
2.
Biomed Opt Express ; 15(8): 4689-4704, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39346992

RESUMEN

Accurate prediction of breast cancer (BC) is essential for effective treatment planning and improving patient outcomes. This study proposes a novel deep learning (DL) approach using photoacoustic (PA) imaging to enhance BC prediction accuracy. We enrolled 334 patients with breast lesions from Shenzhen People's Hospital between January 2022 and January 2024. Our method employs a ResNet50-based model combined with attention mechanisms to analyze photoacoustic ultrasound (PA-US) images. Experiments demonstrated that the PAUS-ResAM50 model achieved superior performance, with an AUC of 0.917 (95% CI: 0.884 -0.951), sensitivity of 0.750, accuracy of 0.854, and specificity of 0.920 in the training set. In the testing set, the model maintained high performance with an AUC of 0.870 (95% CI: 0.778-0.962), sensitivity of 0.786, specificity of 0.872, and accuracy of 0.836. Our model significantly outperformed other models, including PAUS-ResNet50, BMUS-ResAM50, and BMUS-ResNet50, as validated by the DeLong test (p < 0.05 for all comparisons). Additionally, the PAUS-ResAM50 model improved radiologists' diagnostic specificity without reducing sensitivity, highlighting its potential for clinical application. In conclusion, the PAUS-ResAM50 model demonstrates substantial promise for optimizing BC diagnosis and aiding radiologists in early detection of BC.

3.
Biomedicines ; 12(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39200207

RESUMEN

Functional electrical stimulation (FES) is a vital method in neurorehabilitation used to reanimate paralyzed muscles, enhance the size and strength of atrophied muscles, and reduce spasticity. FES often leads to increased muscle fatigue, necessitating careful monitoring of the patient's response. Ultrasound (US) imaging has been utilized to provide valuable insights into FES-induced fatigue by assessing changes in muscle thickness, stiffness, and strain. Current commercial FES electrodes lack sufficient US transparency, hindering the observation of muscle activity beneath the skin where the electrodes are placed. US-compatible electrodes are essential for accurate imaging and optimal FES performance, especially given the spatial constraints of conventional US probes and the need to monitor muscle areas directly beneath the electrodes. This study introduces specially designed body-conforming US-compatible FES (US-FES) electrodes constructed with a silver nanowire/polydimethylsiloxane (AgNW/PDMS) composite. We compared the performance of our body-conforming US-FES electrode with a commercial hydrogel electrode. The findings revealed that our US-FES electrode exhibited comparable conductivity and performance to the commercial one. Furthermore, US compatibility was investigated through phantom and in vivo tests, showing significant compatibility even during FES, unlike the commercial electrode. The results indicated that US-FES electrodes hold significant promise for the real-time monitoring of muscle activity during FES in clinical rehabilitative applications.

4.
Angew Chem Int Ed Engl ; : e202411503, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985723

RESUMEN

Anisotropy is crucial for birefringence (Δn) in optical materials, but optimizing it remains a formidable challenge (Δn >0.3). Supramolecular frameworks incorporating π-conjugated components are promising for achieving enhanced birefringence because of their structural diversity and inherent anisotropy. Herein, we first synthesized (C6H6NO2)+Cl- (NAC) and then constructed a halogen-bonded supramolecular framework I+(C6H4NO2)- (INA) by halogen aliovalent substitution of Cl- with I+. The organic moieties are protonated and deprotonated nicotinic acid (NA), respectively. The antiparallel arrangement of birefringent-active units in NAC and INA leads to significant differences in the bonding characteristics between the interlayer and intralayer domains. Moreover, the [O⋅⋅⋅I+⋅⋅⋅N] halogen bond in 1D [I+(C6H4NO2)-] chain exhibits stronger interactions and stricter directionality, resulting in a more pronounced in-plane anisotropy between the intrachain and interchain directions. Consequently, INA exhibits exceptional birefringent performance, with a value of 0.778 at 550 nm, twice that of NAC (0.363 at 550 nm). This value significantly exceeds those of commercial birefringent crystals, such as CaCO3 (0.172 at 546 nm), and is the highest reported value among ultraviolet birefringent crystals. This work presents a novel design strategy that employs halogen bonds as connection sites and modes for birefringent-active units, opening new avenues for developing high-performance birefringent crystals.

5.
Nat Commun ; 15(1): 6420, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080278

RESUMEN

Re-poling of unexpected partially depoled piezoelectric materials conventionally needs to be first fully depoled through annealing above their Curie temperature to revive piezoelectric performances. Here, we investigated de-poling and re-poling of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals under electric fields at room temperature. We found that alternating current electric fields with amplitudes near the coercive field at low frequencies (<10 Hz) can be employed to successfully depolarize poled crystals at room temperature. We also demonstrated a reversible polarization switching process with a relaxor-PbTiO3 single crystal ultrasound transducer without device performance degradations. This experimental observation is supported by phase-field simulation, showing that alternating current electric fields can readily induce de-poling at room temperature, while direct current electric fields induce a transient depoled state only within an uncontrollable short period of time. The findings suggest new strategies for unprecedented in-device tailoring of the polarization states of ferroelectric materials.

6.
Entropy (Basel) ; 26(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920533

RESUMEN

Network topology plays a key role in determining the characteristics and dynamical behaviors of a network. But in practice, network topology is sometimes hidden or uncertain ahead of time because of network complexity. In this paper, a robust-synchronization-based topology observer (STO) is proposed and applied to solve the problem of identifying the topology of complex delayed networks (TICDNs). In comparison to the existing literature, the proposed STO does not require any prior knowledge about the range of topological parameters and does not have strict limits on topology type. Furthermore, the proposed STO is suitable not only for networks with fixed coupling strength, but also for networks with adaptive coupling strength. Finally, a few comparison examples for TICDNs are used to verify the feasibility and efficiency of the proposed STO, and the results show that the proposed STO outperforms the other methods.

7.
Dalton Trans ; 53(25): 10536-10543, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38842192

RESUMEN

Herein, the first F-containing iodate-phosphate, namely Ba2Ga2F6(IO3)(PO4), was prepared via a hydrothermal reaction, in which HPF6 (70 wt% solution in water) was used as the source of both fluoride and phosphate anions for the first time. Ba2Ga2F6(IO3)(PO4) features an unprecedented 1D [Ga2F6(IO3)(PO4)]4- helix chain, composed of a 1D Ga(1)(IO3)O4F chain via the bridging of 0D Ga(2)(PO4)F5. The UV-Vis spectrum shows that Ba2Ga2F6(IO3)(PO4) has a wide bandgap with a short-UV absorption edge (4.35 eV; 253 nm). Birefringence measurement under a polarizing microscope shows that Ba2Ga2F6(IO3)(PO4) displays a moderate birefringence of 0.072@550 nm, which is consistent with the value (0.070@550 nm) obtained by DFT calculations, indicating that Ba2Ga2F6(IO3)(PO4) has potential applications as a short-UV birefringent material. This study highlights the crucial role played by the incorporation of specific functional groups into compounds, shedding light on their contribution to promising inorganic functional materials.

8.
Photoacoustics ; 38: 100615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38817689

RESUMEN

Background: Accurate assessment of Rheumatoid Arthritis (RA) activity remains a challenge. Multimodal photoacoustic/ultrasound (PA/US) joint imaging emerges as a novel imaging modality capable of depicting microvascularization and oxygenation levels in inflamed joints associated with RA. However, the scarcity of large-scale studies limits the exploration of correlating joint oxygenation status with disease activity. Objective: This study aimed to explore the correlation between multimodal PA/US imaging scores and RA disease activity, assessing its clinical applicability in managing RA. Methods: In this study, we recruited 111 patients diagnosed with RA and conducted examinations of seven small joints on their clinically dominant side using a PA/US imaging system. The PA and power Doppler ultrasound (PDUS) signals were semi-quantitatively assessed using a 0-3 grading system. The cumulative scores for PA and PDUS across these seven joints (PA-sum and PDUS-sum) were calculated. Relative oxygen saturation (So2) values of inflamed joints on the clinically dominant side were measured, and categorized into four distinct PA+So2 patterns. The correlation between PA/US imaging scores and disease activity indices was systematically evaluated. Results: Analysis of 777 small joints in 111 patients revealed that the PA-sum scores exhibited a strong positive correlation with standard clinical scores for RA, including DAS28 [ESR] (ρ = 0.682), DAS28 [CRP] (ρ = 0.683), CDAI (ρ = 0.738), and SDAI (ρ = 0.739), all with p < 0.001. These correlations were superior to those of the PDUS-sum scores (DAS28 [ESR] ρ = 0.559, DAS28 [CRP] ρ = 0.555, CDAI ρ = 0.575, SDAI ρ = 0.581, p < 0.001). Significantly, in patients with higher PA-sum scores, notable differences were observed in the erythrocyte sedimentation rate (ESR) (p < 0.01) and swollen joint count 28 (SJC28) (p < 0.01) between hypoxia and intermediate groups. Notably, RA patients in the hypoxia group exhibited higher clinical scores in certain clinical indices. Conclusion: Multi-modal PA/US imaging introduces potential advancements in RA assessment, especially regarding So2 evaluations in synovial tissues and associated PA scores. However, further studies are warranted, particularly with more substantial sample sizes and in multi-center settings. Summary: This study utilized multi-modal PA/US imaging to analyze Rheumatoid Arthritis (RA) patients' synovial tissues and affected joints. When juxtaposed with traditional PDUS imaging, the PA approach demonstrated enhanced sensitivity, especially concerning detecting small vessels in thickened synovium and inflamed tendon sheaths. Furthermore, correlations between the derived PA scores, PA+So2 patterns, and standard clinical RA scores were observed. These findings suggest that multi-modal PA/US imaging could be a valuable tool in the comprehensive assessment of RA, offering insights not only into disease activity but also into the oxygenation status of synovial tissues. However, as promising as these results are, further investigations, especially in larger and diverse patient populations, are imperative. Key points: ⸸ Multi-modal PA/US Imaging in RA: This novel technique was used to assess the So2 values in synovial tissues and determine PA scores of affected RA joints.⸸ Correlation significantly with Clinical RA Scores: Correlations significantly were noted between PA scores, PA+So2 patterns, and standard clinical RA metrics, hinting at the potential clinical applicability of the technique.

9.
Photoacoustics ; 38: 100606, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38665366

RESUMEN

Background: The differentiation between benign and malignant breast tumors extends beyond morphological structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) imaging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye. Purpose: This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of peritumoral region size on radiomic model accuracy. Materials and methods: From January 2022 to November 2023, data were collected from 358 patients with breast nodules, diagnosed via PA/US examination and classified as BI-RADS 3-5. The study used the largest lesion dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting radiomic features. Techniques from statistics and machine learning were applied for feature selection, and logistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and peritumoral data, with logistic regressions identifying key predictive features. Results: The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in validation. This model outperformed those based solely on clinical features or other radiomic methods, with the 5 mm peritumoral region proving most effective in identifying malignant nodules. Conclusion: This research demonstrates the significant potential of PA imaging in breast cancer radiomics, especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis in accurately characterizing breast nodules.

10.
J Clin Transl Hepatol ; 12(4): 333-345, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38638378

RESUMEN

Background and Aims: The global prevalence of nonalcoholic fatty liver disease (NAFLD) is 25%. This study aimed to explore differences in the gut microbial community and blood lipids between normal livers and those affected by NAFLD using 16S ribosomal deoxyribonucleic acid sequencing. Methods: Gut microbiome profiles of 40 NAFLD and 20 non-NAFLD controls were analyzed. Information about four blood lipids and 13 other clinical features was collected. Patients were divided into three groups by ultrasound and FibroScan, those with a normal liver, mild FL (FL1), and moderate-to-severe FL (FL2). FL1 and FL2 patients were divided into two groups, those with either hyperlipidemia or non-hyperlipidemia based on their blood lipids. Potential keystone species within the groups were identified using univariate analysis and a specificity-occupancy plot. Significant difference in biochemical parameters ion NAFLD patients and healthy individuals were identified by detrended correspondence analysis and canonical correspondence analysis. Results: Decreased gut bacterial diversity was found in patients with NAFLD. Firmicutes/Bacteroidetes decreased as NAFLD progressed. Faecalibacterium and Ruminococcus 2 were the most representative fatty-related bacteria. Glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count were selected as the most significant biochemical indexes. Calculation of areas under the curve identified two microbiomes combined with the three biochemical indexes that identified normal liver and FL2 very well but performed poorly in diagnosing FL1. Conclusions: Faecalibacterium and Ruminococcus 2, combined with glutamate pyruvic transaminase, aspartate aminotransferase, and white blood cell count distinguished NAFLD. We speculate that regulating the health of gut microbiota may release NAFLD, in addition to providing new targets for clinicians to treat NAFLD.

11.
Clin Breast Cancer ; 24(5): e379-e388.e1, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548517

RESUMEN

OBJECTIVES: To develop a nomogram based on photoacoustic imaging (PAI) radiomics and BI-RADs to identify breast cancer (BC) in BI-RADS 4 or 5 lesions detected by ultrasound (US). METHODS: In this retrospective study, 119 females with 119 breast lesions at US and PAI examination were included (January 2022 to December 2022). Patients were divided into the training set (n = 83) or testing set (n = 36) to develop a nomogram to identify BC in BI-RADS 4 or 5 lesions. Relevant factors at clinic, BI-RADS category, and PAI were reviewed. Univariate and multivariate regression was used to evaluate factors for associations with BC. To evaluate the diagnostic performance of nomogram, the area under the curve (AUC) of receiver operating characteristic curve, accuracy, specificity and sensitivity was employed. RESULTS: The nomogram that included BI-RADS category and PAI radiomics score demonstrated a high AUC of 0.925 (95%CI: 0.8467-0.9712) in the training set and 0.926 (95%CI: 0.846-1.000) in the test set. The nomogram also showed significantly better discrimination than the radiomics score (P = .048) or BI-RADS category (P = .009) in the training set. These significant differences were demonstrated in the testing set, outperform the radiomics score (P = .038) and BI-RADS category (P = .013). CONCLUSIONS: The nomogram developed with BI-RADS and PAI radiomics score can effectively identify BC in BI-RADS 4 or 5 lesions. This technique has the potential to further improve early diagnostic accuracy for BC.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Técnicas Fotoacústicas , Ultrasonografía Mamaria , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Estudios Retrospectivos , Persona de Mediana Edad , Técnicas Fotoacústicas/métodos , Adulto , Ultrasonografía Mamaria/métodos , Anciano , Curva ROC , Sensibilidad y Especificidad , Mama/diagnóstico por imagen , Mama/patología , Radiómica
12.
Clin Breast Cancer ; 24(4): e210-e218.e1, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423948

RESUMEN

BACKGROUND: Hypoxia is a hallmark of breast cancer (BC). Photoacoustic (PA) imaging, based on the use of laser-generated ultrasound (US), can detect oxygen saturation (So2) in the tissues of breast lesion patients. PURPOSE: To measure the oxygenation status of tissue in and on both sides of the lesion in breast lesion participants using a multimodal Photoacoustic/ultrasound (PA/US) imaging system and to determine the correlation between So2 measured by PA imaging and benign or malignant disease. MATERIALS AND METHODS: Multimodal PA/US imaging and gray-scale US (GSUS) of breast lesion was performed in consecutive breast lesion participants imaged in the US Outpatient Clinic between 2022 and 2023. Dual-wavelength PA imaging was used to measure the So2 value inside the lesion and on both sides of the tissue, and to distinguish benign from malignant lesions based on the So2 value. The ability of So2 to distinguish benign from malignant breast lesions was evaluated by the receiver operating characteristic curve (ROC) and the De-Long test. RESULTS: A total of 120 breast lesion participants (median age, 42.5 years) were included in the study. The malignant lesions exhibited lower So2 levels compared to benign lesions (malignant: 71.30%; benign: 83.81%; P < .01). Moreover, PA/US imaging demonstrates superior diagnostic results compared to GSUS, with an area under the curve (AUC) of 0.89 versus 0.70, sensitivity of 89.58% versus 85.42%, and specificity of 86.11% versus 55.56% at the So2 cut-off value of 78.85 (P < .001). The false positive rate in GSUS reduced by 30.75%, and the false negative rate diminished by 4.16% with PA /US diagnosis. Finally, the So2 on both sides tissues of malignant lesions are lower than that of benign lesions (P < .01). CONCLUSION: PA imaging allows for the assessment of So2 within the lesions of breast lesion patients, thereby facilitating a superior distinction between benign and malignant lesions.


Asunto(s)
Neoplasias de la Mama , Saturación de Oxígeno , Técnicas Fotoacústicas , Ultrasonografía Mamaria , Humanos , Femenino , Técnicas Fotoacústicas/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Adulto , Persona de Mediana Edad , Ultrasonografía Mamaria/métodos , Anciano , Mama/diagnóstico por imagen , Mama/patología , Curva ROC , Diagnóstico Diferencial , Imagen Multimodal/métodos
13.
Ultrasound Med Biol ; 50(5): 722-728, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38369431

RESUMEN

OBJECTIVE: Although ultrasound is a common tool for breast cancer screening, its accuracy is often operator-dependent. In this study, we proposed a new automated deep-learning framework that extracts video-based ultrasound data for breast cancer screening. METHODS: Our framework incorporates DenseNet121, MobileNet, and Xception as backbones for both video- and image-based models. We used data from 3907 patients to train and evaluate the models, which were tested using video- and image-based methods, as well as reader studies with human experts. RESULTS: This study evaluated 3907 female patients aged 22 to 86 years. The results indicated that the MobileNet video model achieved an AUROC of 0.961 in prospective data testing, surpassing the DenseNet121 video model. In real-world data testing, it demonstrated an accuracy of 92.59%, outperforming both the DenseNet121 and Xception video models, and exceeding the 76.00% to 85.60% accuracy range of human experts. Additionally, the MobileNet video model exceeded the performance of image models and other video models across all evaluation metrics, including accuracy, sensitivity, specificity, F1 score, and AUC. Its exceptional performance, particularly suitable for resource-limited clinical settings, demonstrates its potential for clinical application in breast cancer screening. CONCLUSIONS: The level of expertise reached by the video models was greater than that achieved by image-based models. We have developed an artificial intelligence framework based on videos that may be able to aid breast cancer diagnosis and alleviate the shortage of experienced experts.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Inteligencia Artificial , Estudios Prospectivos , Ultrasonografía
14.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391993

RESUMEN

To address the need for high-resolution imaging in lung nodule detection and overcome the limitations of the shallow imaging depth associated with high-frequency ultrasound and the complex structure of lung tissue, we successfully integrated 50 MHz ultrasound transducers with 18-gauge biopsy needles. Featuring a miniaturized size of 0.6 × 0.5 × 0.5 mm3, the 50 MHz micromachined 1-3 composite transducer was tested to perform mechanical scanning of a nodule within a lung-tissue-mimicking phantom in vitro. The high-frequency transducer demonstrated the ability to achieve imaging with an axial resolution of 30 µm for measuring nodule edges. Moreover, the integrated biopsy needle prototype exhibited high accuracy (1.74% discrepancy) in estimating nodule area compared to actual dimensions in vitro. These results underscore the promising potential of biopsy-needle-integrated transducers in enhancing the accuracy of endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNA) for clinical applications.


Asunto(s)
Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Transductores , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos , Fantasmas de Imagen
15.
Comput Methods Programs Biomed ; 245: 108039, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266556

RESUMEN

BACKGROUND: The risk of ductal carcinoma in situ (DCIS) identified by biopsy often increases during surgery. Therefore, confirming the DCIS grade preoperatively is necessary for clinical decision-making. PURPOSE: To train a three-classification deep learning (DL) model based on ultrasound (US), combining clinical data, mammography (MG), US, and core needle biopsy (CNB) pathology to predict low-grade DCIS, intermediate-to-high-grade DCIS, and upstaged DCIS. MATERIALS AND METHODS: Data of 733 patients with 754 DCIS cases confirmed by biopsy were retrospectively collected from May 2013 to June 2022 (N1), and other data (N2) were confirmed by biopsy as low-grade DCIS. The lesions were randomly divided into training (n=471), validation (n=142), and test (n = 141) sets to establish the DCIS-Net. Information on the DCIS-Net, clinical (age and sign), US (size, calcifications, type, breast imaging reporting and data system [BI-RADS]), MG (microcalcifications, BI-RADS), and CNB pathology (nuclear grade, architectural features, and immunohistochemistry) were collected. Logistic regression and random forest analyses were conducted to develop Multimodal DCIS-Net to calculate the specificity, sensitivity, accuracy, receiver operating characteristic curve, and area under the curve (AUC). RESULTS: In the test set of N1, the accuracy and AUC of the multimodal DCIS-Net were 0.752-0.766 and 0.859-0.907 in the three-classification task, respectively. The accuracy and AUC for discriminating DCIS from upstaged DCIS were 0.751-0.780 and 0.829-0.861, respectively. In the test set of N2, the accuracy and AUC of discriminating low-grade DCIS from upstaged low-grade DCIS were 0.769-0.987 and 0.818-0.939, respectively. DL was ranked from one to five in the importance of features in the multimodal-DCIS-Net. CONCLUSION: By developing the DCIS-Net and integrating it with multimodal information, diagnosing low-grade DCIS, intermediate-to high-grade DCIS, and upstaged DCIS is possible. It can also be used to distinguish DCIS from upstaged DCIS and low-grade DCIS from upstaged low-grade DCIS, which could pave the way for the DCIS clinical workflow.


Asunto(s)
Neoplasias de la Mama , Calcinosis , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Patología Quirúrgica , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/cirugía , Estudios Retrospectivos , Mamografía , Neoplasias de la Mama/diagnóstico por imagen
16.
Ultrasonics ; 138: 107245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232449

RESUMEN

As the demand for clean energy becomes greater worldwide, there will also be an increasing demand for next generation nuclear power plants that incorporate advanced sensors and monitoring equipment. A major challenge posed by nuclear power plants is that, during normal operation, the reactor compartment is subjected to high operating temperatures and radiation flux. Diagnostic sensors monitoring such structures are also subject to temperatures reaching hundreds of degrees Celsius, which puts them at risk for heat degradation. In this work, the ability of carbon nanofibers to work in conjunction with a liquid metal as a photoacoustic transmitter was demonstrated at high temperatures. Fields metal, a Bi-In-Sn eutectic, and gallium are compared as acoustic mediums. Fields metal was shown experimentally to have superior performance over gallium and other reference cases. Under stimulation from a low fluence 6 ns pulse laser at 6 mJ/cm2 with 532 nm green light, the Fields metal transducer transmitted a 200 kHz longitudinal wave with amplitude >5.5 times that generated by a gallium transducer at 300 °C. Each high temperature test was conducted from a hot to cold progression, beginning as high as 300 °C, and then cooling down to 100 °C. Each test shows increasing signal amplitude of the liquid metal transducers as temperature decreases. Carbon nanofibers show a strong improvement over previously used candle-soot nanoparticles in both their ability to produce strong acoustic signals and absorb higher laser fluences up to 12 mJ/cm2.

17.
Postgrad Med J ; 100(1183): 309-318, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275274

RESUMEN

BACKGROUND: The application of photoacoustic imaging (PAI), utilizing laser-induced ultrasound, shows potential in assessing blood oxygenation in breast nodules. However, its effectiveness in distinguishing between malignant and benign nodules remains insufficiently explored. PURPOSE: This study aims to develop nomogram models for predicting the benign or malignant nature of breast nodules using PAI. METHOD: A prospective cohort study enrolled 369 breast nodules, subjecting them to PAI and ultrasound examination. The training and testing cohorts were randomly divided into two cohorts in a ratio of 3:1. Based on the source of the variables, three models were developed, Model 1: photoacoustic-BIRADS+BMI + blood oxygenation, Model 2: BIRADS+Shape+Intranodal blood (Doppler) + BMI, Model 3: photoacoustic-BIRADS+BIRADS+ Shape+Intranodal blood (Doppler) + BMI + blood oxygenation. Risk factors were identified through logistic regression, resulting in the creation of three predictive models. These models were evaluated using calibration curves, subject receiver operating characteristic (ROC), and decision curve analysis. RESULTS: The area under the ROC curve for the training cohort was 0.91 (95% confidence interval, 95% CI: 0.88-0.95), 0.92 (95% CI: 0.89-0.95), and 0.97 (95% CI: 0.96-0.99) for Models 1-3, and the ROC curve for the testing cohort was 0.95 (95% CI: 0.91-0.98), 0.89 (95% CI: 0.83-0.96), and 0.97 (95% CI: 0.95-0.99) for Models 1-3. CONCLUSIONS: The calibration curves demonstrate that the model's predictions agree with the actual values. Decision curve analysis suggests a good clinical application.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Técnicas Fotoacústicas , Humanos , Femenino , Técnicas Fotoacústicas/métodos , Neoplasias de la Mama/diagnóstico por imagen , Estudios Prospectivos , Persona de Mediana Edad , Adulto , Ultrasonografía Mamaria/métodos , Curva ROC , Anciano , Valor Predictivo de las Pruebas , Diagnóstico Diferencial
18.
BMC Med Inform Decis Mak ; 24(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166852

RESUMEN

BACKGROUND: The application of artificial intelligence (AI) in the ultrasound (US) diagnosis of breast cancer (BCa) is increasingly prevalent. However, the impact of US-probe frequencies on the diagnostic efficacy of AI models has not been clearly established. OBJECTIVES: To explore the impact of using US-video of variable frequencies on the diagnostic efficacy of AI in breast US screening. METHODS: This study utilized different frequency US-probes (L14: frequency range: 3.0-14.0 MHz, central frequency 9 MHz, L9: frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz and L13: frequency range: 3.6-13.5 MHz, central frequency 8 MHz, L7: frequency range: 3-7 MHz, central frequency 4.0 MHz, linear arrays) to collect breast-video and applied an entropy-based deep learning approach for evaluation. We analyzed the average two-dimensional image entropy (2-DIE) of these videos and the performance of AI models in processing videos from these different frequencies to assess how probe frequency affects AI diagnostic performance. RESULTS: The study found that in testing set 1, L9 was higher than L14 in average 2-DIE; in testing set 2, L13 was higher in average 2-DIE than L7. The diagnostic efficacy of US-data, utilized in AI model analysis, varied across different frequencies (AUC: L9 > L14: 0.849 vs. 0.784; L13 > L7: 0.920 vs. 0.887). CONCLUSION: This study indicate that US-data acquired using probes with varying frequencies exhibit diverse average 2-DIE values, and datasets characterized by higher average 2-DIE demonstrate enhanced diagnostic outcomes in AI-driven BCa diagnosis. Unlike other studies, our research emphasizes the importance of US-probe frequency selection on AI model diagnostic performance, rather than focusing solely on the AI algorithms themselves. These insights offer a new perspective for early BCa screening and diagnosis and are of significant for future choices of US equipment and optimization of AI algorithms.


The research on artificial intelligence-assisted breast diagnosis often relies on static images or dynamic videos obtained from ultrasound probes with different frequencies. However, the effect of frequency-induced image variations on the diagnostic performance of artificial intelligence models remains unclear. In this study, we aimed to explore the impact of using ultrasound images with variable frequencies on AI's diagnostic efficacy in breast ultrasound screening. Our approach involved employing a video and entropy-based feature breast network to compare the diagnostic efficiency and average two-dimensional image entropy of the L14 (frequency range: 3.0-14.0 MHz, central frequency 9 MHz), L9 (frequency range: 2.5-9.0 MHz, central frequency 6.5 MHz) linear array probe and L13 (frequency range: 3.6-13.5 MHz, central frequency 8 MHz), and L7 (frequency range: 3-7 MHz, central frequency 4.0 MHz) linear array probes. The results revealed that the diagnostic efficiency of AI models differed based on the frequency of the ultrasound probe. It is noteworthy that ultrasound images acquired with different frequency probes exhibit different average two-dimensional image entropy, while higher average two-dimensional image entropy positively affect the diagnostic performance of the AI model. We concluded that a dataset with higher average two-dimensional image entropy is associated with superior diagnostic efficacy for AI-based breast diagnosis. These findings contribute to a better understanding of how ultrasound image variations impact AI-assisted breast diagnosis, potentially leading to improved breast cancer screening outcomes.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Humanos , Femenino , Entropía , Ultrasonografía , Neoplasias de la Mama/diagnóstico por imagen , Algoritmos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38261605

RESUMEN

OBJECTIVES: Rheumatoid arthritis (RA) is characterized by hypoxia in the synovial tissue. While photoacoustic imaging (PA) offers a method to evaluate tissue oxygenation in RA patients, studies exploring the link between extra-synovial tissue of wrist oxygenation and disease activity remain scarce. We aimed to assess synovial oxygenation in RA patients using a multimodal photoacoustic-ultrasound (PA/US) imaging system and establish its correlation with disease activity. METHODS: A retrospective study was conducted on 111 patients with RA and 72 healthy controls from 2022 to 2023. Dual-wavelength PA imaging quantified oxygen saturation (So2) levels in the synovial membrane and peri-wrist region. Oxygenation states were categorised as hyperoxia, intermediate oxygenation, and hypoxia based on So2 values. The association between oxygenation levels and the clinical disease activity index was evaluated using a one-way analysis of variance, complemented by the Kruskal-Wallis test with Bonferroni adjustment. RESULTS: Of the patients with RA, 39 exhibited hyperoxia, 24 had intermediate oxygenation, and 48 had hypoxia in the wrist extra-synovial tissue. All of the control participants exhibited the hyperoxia status. Oxygenation levels in patients with RA correlated with clinical metrics. Patients with intermediate oxygenation had a lower disease activity index compared with those with hypoxia and hyperoxia. CONCLUSION: A significant correlation exists between wrist extra-synovial tissue oxygenation and disease activity in patients with RA.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37971905

RESUMEN

Due to the rapid developments in materials science and fabrication techniques, wearable devices have recently received increased attention for biomedical applications, particularly in medical ultrasound imaging, sensing, and therapy. Ultrasound is ubiquitous in biomedical applications because of its non-invasive nature, nonionic radiating, high precision, and real-time capabilities. While conventional ultrasound transducers are rigid and bulky, flexible transducers can be conformed to curved body areas for continuous sensing without restricting tissue movement or transducer shifting. This article comprehensively reviews the application of flexible ultrasound transducers in the field of biomedical imaging, sensing, and therapy. First, we review the background of flexible ultrasound transducers. Following that, we discuss advanced materials and fabrication techniques for flexible ultrasound transducers and their enabling technology status. Lastly, we highlight and summarize some promising preliminary data with recent applications of flexible ultrasound transducers in biomedical imaging, sensing, and therapy. We also provide technical barriers, challenges, and future perspectives for further research and development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...