RESUMEN
BACKGROUND AND OBJECTIVE: Inotuzumab ozogamicin is an antibody-drug conjugate approved for treating relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in adults. Pediatric pharmacokinetic data of inotuzumab ozogamicin are lacking. This study is the first to examine the population pharmacokinetics of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL. METHODS: From 531 adult patients with B-cell non-Hodgkin's lymphoma, 234 adult patients with BCP-ALL, and 53 pediatric patients with BCP-ALL, 8924 inotuzumab ozogamicin serum concentrations were analyzed using non-linear mixed-effects modeling. A published adult inotuzumab ozogamicin population-pharmacokinetic model, a two-compartment model with linear and time-dependent clearance, was adapted to describe the pediatric data. RESULTS: Modifications in this analysis, compared to the published adult model, included: (i) re-estimating pharmacokinetic parameters and covariate effects; (ii) modifying covariate representation; and (iii) introducing relevant pediatric covariate effects (age on the decay coefficient of time-dependent clearance and ALL effect (disease type and/or different bioanalytical analysis methods) on initial values of time-dependent clearance). For patients with relapsed/refractory BCP-ALL, increasing age was associated with a decreasing decay coefficient of time-dependent clearance, reflecting that the target-mediated drug clearance declines more rapidly in children. In pediatric BCP-ALL, the median [interquartile range] cumulative area under the concentration-time curve was significantly higher among responders (n = 42) versus non-responders (n = 10) at the end of the first cycle (26.1 [18.9-35.0] vs 10.1 [9.19-16.1], × 103 ng*h/mL, p < 0.001). From simulations performed at the recommended pediatric phase II dose, inotuzumab ozogamicin exposure reached a similar level as observed in responding pediatric trial participants. CONCLUSIONS: The pharmacokinetic profile of inotuzumab ozogamicin in pediatric patients with relapsed/refractory BCP-ALL was well described in this study. No dose adjustment is required clinically for pediatric patients with BCP-ALL based on the simulated inotuzumab ozogamicin exposure at the recommended pediatric phase II dose, promising efficacy and acceptable tolerability.
Asunto(s)
Antineoplásicos Inmunológicos , Inotuzumab Ozogamicina , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Inotuzumab Ozogamicina/farmacocinética , Inotuzumab Ozogamicina/administración & dosificación , Niño , Masculino , Femenino , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Preescolar , Antineoplásicos Inmunológicos/farmacocinética , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/uso terapéutico , Adulto , Adulto Joven , Persona de Mediana Edad , Modelos Biológicos , Recurrencia , Lactante , AncianoRESUMEN
Several lines of evidence have indicated that depression might be a prodromal symptom of Alzheimer's disease (AD). This systematic review and meta-analysis investigated the cross-sectional association between amyloid-beta, one of the key pathologies defining AD, and depression or depressive symptoms in older adults without dementia. A systematic search in PubMed yielded 689 peer-reviewed articles. After full-text screening, nine CSF studies, 11 PET studies, and five plasma studies were included. No association between amyloid-beta and depression or depressive symptoms were found using cerebrospinal fluid (CSF) (0.15; 95% CI: -0.08; 0.37), positron emission topography (PET) (Cohen's d: 0.09; 95% CI: -0.05; 0.24), or plasma (-0.01; 95% CI: -0.23; 0.22). However, subgroup analyses revealed an association in plasma studies of individuals with cognitive impairment. A trend of an association was found in the studies using CSF and PET. This systematic review and meta-analysis suggested that depressive symptoms may be part of the prodromal stage of dementia.
Asunto(s)
Péptidos beta-Amiloides , Disfunción Cognitiva , Depresión , Anciano , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Disfunción Cognitiva/diagnóstico , Estudios Transversales , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeoRESUMEN
The object of this work is to prepare quinoxaline-based benzoxazines and evaluate thermal properties of their thermosets. For this object, 4,4'-(quinoxaline-2,3-diyl)diphenol (QDP)/furfurylamine-based benzoxazine (QDP-fu) and 4,4',4â³,4â´-([6,6'-biquinoxaline]-2,2',3,3'-tetrayl)tetraphenol (BQTP)/furfurylamine-based benzoxazine (BQTP-fu) were prepared. The structures of QDP-fu and BQTP-fu were successfully confirmed by FTIR and 1H and 13C NMR spectra. We studied the curing behavior of QDP-fu and BQTP-fu and thermal properties of their thermosets. According to DSC thermograms, QDP-fu and BQTP-fu have the attractive onset exothermic temperatures of 181 and 186 °C, respectively. The onset temperature is approximately 45 °C lower than that of a bisphenol A/furfurylamine-based benzoxazines. According to DMA TMA and TGA thermograms, the thermoset of BQTP-fu shows impressive thermal properties, with a T g value of 418 °C, a coefficient of thermal expansion of 39 ppm/°C, a 5% decomposition temperature of 430 °C, and a char yield of 72%.
RESUMEN
Biosorption has emerged as a promising alternative approach for treating wastewater with dilute metal contents in a green and cost effective way. In this study, extracellular proteins of an isolated thermophilic bacterium (Tepidimonas fonticaldi AT-A2) were used as biosorbent to recover precious metal (i.e., Au) from wastewater. The Au (III) adsorption capacity on the T. fonticaldi AT-A2 proteins was the highest when the pH was set at about 4.0-5.0. The adsorption capacity increased with increasing temperature from 15 to 70°C. Adsorption isotherm studies show that both Langmuir and Freundrich models could describe the adsorption equilibrium. The maximum adsorption capacity of Au (III) at 50°C and pH 5 could reach 9.7mg Au/mg protein. The protein-based biosorbent was also used for the recovery of Au from a wastewater containing 15mg/L of Au, achieving a high adsorption capacity of 1.45mg Au/mg protein and a removal efficiency of 71%.