Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
JACS Au ; 4(6): 2393-2402, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938789

RESUMEN

Metal halide perovskites have outperformed conventional inorganic semiconductors in direct X-ray detection due to their ease of synthesis and intriguing photoelectric properties. However, the operational instability caused by severe ion migration under a high external electric field is still a big concern for the practical application of perovskite detectors. Here, we report a 2D (BPEA)2PbI4 (BPEA = R-1-(4-bromophenyl)ethylammonium) perovskite with Br-substituted aromatic spacer capable of introducing abundant interactions, e.g., the molecular electrostatic forces between Br atoms and aromatic rings and halogen bonds of Br-I, in the interlayer space, which effectively suppresses ion migration and thus enables superior operational stability. Constructing direct X-ray detectors based on high-quality single crystals of (BPEA)2PbI4 results in a high sensitivity of 1,003 µC Gy-1 cm-2, a low detection limit of 366 nGy s-1, and an ultralow baseline drift of 3.48 × 10-8 nA cm-1 s-1 V-1 at 80 V bias. More strikingly, it also exhibits exceptional operational stability under high flux, long-time X-ray irradiation, and large working voltage. This work shows an integration of multiple interlayer interactions to stabilize perovskite X-ray detectors, providing new insights into the future design of perovskite optoelectronic devices toward practical application.

2.
Nat Commun ; 15(1): 5395, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926423

RESUMEN

This report presents liquid metal-based infrared-modulating materials and systems with multiple modes to regulate the infrared reflection. Inspired by the brightness adjustment in chameleon skin, shape-morphing liquid metal droplets in silicone elastomer (Ecoflex) matrix are used to resemble the dispersed "melanophores". In the system, Ecoflex acts as hormone to drive the deformation of liquid metal droplets. Both total and specular reflectance-based infrared camouflage are achieved. Typically, the total and specular reflectances show change of ~44.8% and 61.2%, respectively, which are among the highest values reported for infrared camouflage. Programmable infrared encoding/decoding is explored by adjusting the concentration of liquid metal and applying areal strains. By introducing alloys with different melting points, temperature-dependent infrared painting/writing can be achieved. Furthermore, the multi-layered structure of infrared-modulating system is designed, where the liquid metal-based infrared modulating materials are integrated with an evaporated metallic film for enhanced performance of such system.

3.
Nat Commun ; 15(1): 5084, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877007

RESUMEN

Corrosion of electrocatalysts during electrochemical operations, such as low potential - high potential cyclic swapping, can cause significant performance degradation. However, the electrochemical corrosion dynamics, including structural changes, especially site and composition specific ones, and their correlation with electrochemical processes are hidden due to the insufficient spatial-temporal resolution characterization methods. Using electrochemical liquid cell transmission electron microscopy, we visualize the electrochemical corrosion of Pd@Pt core-shell octahedral nanoparticles towards a Pt nanoframe. The potential-dependent surface reconstruction during multiple continuous in-situ cyclic voltammetry with clear redox peaks is captured, revealing an etching and deposition process of Pd that results in internal Pd atoms being relocated to external surface, followed by subsequent preferential corrosion of Pt (111) terraces rather than the edges or corners, simultaneously capturing the structure evolution also allows to attribute the site-specific Pt and Pd atomic dynamics to individual oxidation and reduction events. This work provides profound insights into the surface reconstruction of nanoparticles during complex electrochemical processes.

4.
ACS Appl Bio Mater ; 7(6): 3900-3914, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38840339

RESUMEN

The poor clinical performance of titanium and its alloy implants is mainly attributed to their lack of antibacterial ability and poor osseointegration. The key and challenge lie in how to enhance their osteoinductivity while imparting antibacterial capability. In this study, a titanium oxide metasurface with light-responsive behavior was constructed on the surface of titanium alloy using an alkaline-acid bidirectional hydrothermal method. The effects of the acid type, acid concentration, hydrothermal time, hydrothermal temperature, and subsequent heat treatments on the optical behavior of the metasurface were systematically investigated with a focus on exploring the influence of the metasurface and photodynamic reaction on the osteogenic activity of osteoblasts. Results show that the type of acid and heat treatment significantly affect the light absorption of the titanium alloy surface, with HCl and post-heat-treatment favoring redshift in the light absorption. Under 808 nm near-infrared (NIR) irradiation for 10 min, in vitro antibacterial experiments demonstrate that the antibacterial rate of the metasurface titanium alloy against Staphylococcus aureus and Escherichia coli were 96.87% and 99.27%, respectively. In vitro cell experiments demonstrate that the nanostructure facilitates cell adhesion, proliferation, differentiation, and expression of osteogenic-related genes. Surprisingly, the nanostructure promoted the expression of relevant osteogenic genes of MC3T3-E1 under 808 nm NIR irradiation. This study provides a method for the surface modification of titanium alloy implants.


Asunto(s)
Aleaciones , Antibacterianos , Materiales Biocompatibles , Escherichia coli , Rayos Infrarrojos , Ensayo de Materiales , Nanoestructuras , Staphylococcus aureus , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Aleaciones/química , Aleaciones/farmacología , Escherichia coli/efectos de los fármacos , Nanoestructuras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Animales , Ratones , Osteogénesis/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Proliferación Celular/efectos de los fármacos , Oseointegración/efectos de los fármacos
5.
Nano Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843402

RESUMEN

High-entropy alloys (HEAs) have garnered considerable attention as promising nanocatalysts for effectively utilizing Pt in catalysis toward oxygen reduction reactions due to their unique properties. Nonetheless, there is a relative dearth of attention regarding the structural evolution of HEAs in response to electrochemical conditions. In this work, we propose a thermal reduction method to synthesize high entropy nanoparticles by leveraging the confinement effect and abundant nitrogen-anchored sites provided by pyrolyzed metal-organic frameworks (MOFs). Notably, the prepared catalysts exhibit enhanced activity accompanied by structural reconstruction during electrochemical activation, approaching 1 order of magnitude higher mass activity compared to Pt/C in oxygen reduction. Atomic-scale structural characterization reveals that abundant defects and single atoms are formed during the activation process, contributing to a significant boost in the catalytic performance for oxygen reduction reactions. This study provides deep insights into surface reconstruction engineering during electrochemical operations, with practical implications for fuel cell applications.

6.
Front Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926249

RESUMEN

Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.

7.
Bioorg Chem ; 148: 107456, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761706

RESUMEN

The targeting of cyclin-dependent kinase 7 (CDK7) has become a highly desirable therapeutic approach in the field of oncology due to its dual role in regulating essential biological processes, encompassing cell cycle progression and transcriptional control. We have previously identified a highly selective thieno[3,2-d]pyrimidine-based CDK7 inhibitor with demonstrated efficacy and safety in animal model. In this study, we sought to optimize the thieno[3,2-d]pyrimidine core to discover a novel series of CDK7 inhibitors with improved potency and pharmacokinetic (PK) properties. Through extensive structure-activity relationship (SAR) studies, compound 20 has emerged as the lead candidate due to its potent inhibitory activity against CDK7 and remarkable efficacy on MDA-MB-453 cells, a representative triple negative breast cancer (TNBC) cell line. Furthermore, 20 has demonstrated favorable oral bioavailability and exhibited highly desirable pharmacokinetic (PK) properties, making it a promising lead candidate for further structural optimization.


Asunto(s)
Antineoplásicos , Quinasa Activadora de Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes , Diseño de Fármacos , Inhibidores de Proteínas Quinasas , Pirimidinas , Pirimidinas/química , Pirimidinas/síntesis química , Pirimidinas/farmacología , Pirimidinas/farmacocinética , Humanos , Relación Estructura-Actividad , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Estructura Molecular , Animales , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Ratas
8.
Medicine (Baltimore) ; 103(18): e38015, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701294

RESUMEN

BACKGROUND: Compared with traditional root canal therapy (RCT), vital pulp therapy (VPT) is a personalized and minimally invasive method for the treatment of pulpitis caused by dental caries. However, there are still no clear guidelines for VPT because high-quality randomized clinical trials are scarce. This prospective cohort study evaluated the clinical efficacy of VPT with the light-curable calcium silicate-based material TheraCal LC (TH) and bioceramic material iRoot BP Plus (BP) in reversible and irreversible pulpitis permanent teeth with carious exposures. METHODS: 115 teeth with reversible or irreversible pulpitis caused by deep care were randomly divided into 2 groups. TheraCal LC and iRoot BP Plus were used for the pulp capping. Direct pulp capping (DPC), partial pulpotomy (PP) and full pulpotomy (FP) were performed based on observation of the exposed pulp. Postoperative discomforts were enquired and recorded via follow-up phone calls. Clinical and radiographic evaluations were performed 3, 6, and 12 months postoperatively. RESULTS: The overall clinical success rate in the first year was 90.4% (47/52) in both groups. The TH group required less operating time, showed lower levels of pain, and had shorter pain duration post-operative (P < .001). According to the binary logistic regression model, preoperative pain duration was significantly correlated with the prognosis of VPT (P = .011). CONCLUSION: VPT with TheraCal LC and iRoot BP Plus in pulpitis permanent carious teeth both achieved good clinical outcomes, and TheraCal LC can be easily operated for clinical use. Preoperative pain duration of the affected tooth might have a significant correlation with the prognosis of VPT.


Asunto(s)
Compuestos de Calcio , Recubrimiento de la Pulpa Dental , Pulpitis , Pulpotomía , Silicatos , Humanos , Pulpitis/terapia , Compuestos de Calcio/uso terapéutico , Compuestos de Calcio/administración & dosificación , Silicatos/uso terapéutico , Femenino , Masculino , Pulpotomía/métodos , Adulto , Estudios Prospectivos , Recubrimiento de la Pulpa Dental/métodos , Caries Dental/terapia , Adulto Joven , Resultado del Tratamiento , Adolescente , Persona de Mediana Edad , Combinación de Medicamentos , Hidróxido de Calcio/uso terapéutico , Compuestos de Aluminio/uso terapéutico , Óxidos/uso terapéutico , Óxidos/administración & dosificación
10.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794054

RESUMEN

Based on the decorrelation calculation of diffusion ultrasound in time-frequency domain, this paper discusses the repeatability and potential significance of Disturbance Sensitive Zone (DSZ) in time-frequency domain. The experimental study of Barely Visible Impact Damage (BVID) on Carbon Fiber Reinforced Polymer (CFRP) is carried out. The decorrelation coefficients of time, frequency, and time-frequency domains and DSZ are calculated and compared. It has been observed that the sensitivity of the scattered wave disturbance caused by impact damage is non-uniformly distributed in both the time and frequency domains. This is evident from the non-uniform distribution of the decorrelation coefficient in time-domain and frequency-domain decorrelation calculations. Further, the decorrelation calculation in the time-frequency domain can show the distribution of the sensitivity of the scattered wave disturbance in the time domain and frequency domain. The decorrelation coefficients in time, frequency, and time-frequency domains increase monotonically with the number of impacts. In addition, in the time-frequency domain decorrelation calculation results, stable and repetitive DSZ are observed, which means that the specific frequency component of the scattered wave is extremely sensitive to the damage evolution of the impact region at a specific time. Finally, the DSZ obtained from the first 15 impacts is used to improve the decorrelation calculation in the 16-th to 20-th impact. The results show that the increment rate of the improved decorrelation coefficient is 10.22%. This study reveals that the diffusion ultrasonic decorrelation calculation improved by DSZ makes it feasible to evaluate early-stage damage caused by BVID.

11.
Front Microbiol ; 15: 1343891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601942

RESUMEN

The gut microbiota plays an important role in the disease progression of inflammatory bowel disease. Although probiotics are effective against IBD, not many studies have investigated their effects on gut microbiota composition and immunomodulation in mouse colitis models. Our study aimed at the therapeutic effects of Lacticaseibacillus paracasei BNCC345679 for the first time and explored its impact on gut microbiome dysbiosis, inflammatory cytokines, related miRNAs, VCAM-1, oxidative stress, intestinal integrity, and mucus barrier. We found that oral intervention of L. paracasei BNCC345679 affects recovering beneficial microbial taxa, including lactobacillus spp. and akkermansia spp., followed by improved body weight, DAI score, and inflammatory cytokines. L. paracasei BNCC345679 mitigated oxidative stress and increased the expression of intestinal integrity proteins MUC2 and ZO-1. These results suggested that L. paracasei BNCC345679 has the capacity to reduce DSS-induced colitis and has the potential as a supplement for the mitigation of IBD.

12.
Cardiovasc Diabetol ; 23(1): 132, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650038

RESUMEN

IMPORTANCE: Diabetes mellitus (DM) is thought to be closely related to arterial stenotic or occlusive disease caused by atherosclerosis. However, there is still no definitive clinical evidence to confirm that patients with diabetes have a higher risk of restenosis. OBJECTIVE: This meta-analysis was conducted to determine the effect of DM on restenosis among patients undergoing endovascular treatment, such as percutaneous transluminal angioplasty (PTA) or stenting. DATA SOURCES AND STUDY SELECTION: The PubMed/Medline, EMBASE and Cochrane Library electronic databases were searched from 01/1990 to 12/2022, without language restrictions. Trials were included if they satisfied the following eligibility criteria: (1) RCTs of patients with or without DM; (2) lesions confined to the coronary arteries or femoral popliteal artery; (3) endovascular treatment via PTA or stenting; and (4) an outcome of restenosis at the target lesion site. The exclusion criteria included the following: (1) greater than 20% of patients lost to follow-up and (2) a secondary restenosis operation. DATA EXTRACTION AND SYNTHESIS: Two researchers independently screened the titles and abstracts for relevance, obtained full texts of potentially eligible studies, and assessed suitability based on inclusion and exclusion criteria.. Disagreements were resolved through consultation with a third researcher. Treatment effects were measured by relative ratios (RRs) with 95% confidence intervals (CIs) using random effects models. The quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. MAIN OUTCOMES AND MEASURES: The main observation endpoint was restenosis, including > 50% stenosis at angiography, or TLR of the primary operation lesion during the follow-up period. RESULTS: A total of 31,066 patients from 20 RCTs were included. Patients with DM had a higher risk of primary restenosis after endovascular treatment (RR = 1.43, 95% CI: 1.25-1.62; p = 0.001). CONCLUSIONS AND RELEVANCE: This meta-analysis of all currently available RCTs showed that patients with DM are more prone to primary restenosis after endovascular treatment.


Asunto(s)
Diabetes Mellitus , Ensayos Clínicos Controlados Aleatorios como Asunto , Recurrencia , Stents , Humanos , Resultado del Tratamiento , Factores de Riesgo , Masculino , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Femenino , Persona de Mediana Edad , Medición de Riesgo , Anciano , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/diagnóstico , Factores de Tiempo , Grado de Desobstrucción Vascular , Procedimientos Endovasculares/efectos adversos , Anciano de 80 o más Años
14.
ACS Omega ; 9(13): 15101-15113, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585111

RESUMEN

This study provides a comprehensive analysis of the adsorption behaviors and mechanisms of phenol and catechol on magnetic graphene oxide (MGO) nanocomposites based on adsorption experiments, mathematical models, and molecular simulations. Through systematic experiments, the influence of various parameters, including contact time, pH conditions, and ionic strength, on the adsorption efficacy was comprehensively evaluated. The optimal contact time for adsorption was identified as 60 min, with the observation that an increase in inorganic salt concentration adversely affected the MGOs' adsorption capacity for both phenol and catechol. Specifically, MGOs exhibited a superior adsorption performance under mildly acidic conditions. The adsorption isotherm was well represented by the Langmuir model, suggesting monolayer coverage and finite adsorption sites for both pollutants. In terms of adsorption kinetics, a pseudo-first-order kinetic model was the most suitable for describing phenol adsorption, while catechol adsorption conformed more closely to a pseudo-second-order model, indicating distinct adsorption processes for these two similar compounds. Furthermore, this research utilized quantum chemical calculations to decipher the interaction mechanisms at the molecular level. Such calculations provided both a visual representation and a quantitative analysis of the interactions, elucidating the underlying physical and chemical forces governing the adsorption phenomena. The findings could not only offer crucial insights for the treatment of coal industrial wastewater containing phenolic compounds with bridging macroscopic observations with microscopic theoretical explanations but also advance the understanding of material-pollutant interactions in aqueous environments.

15.
J Nat Med ; 78(3): 693-701, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38587581

RESUMEN

Mountain caviar is a fruit of Kochia scoparia that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.


Asunto(s)
Glucemia , Glucosa , Hipoglucemiantes , Extractos Vegetales , Saponinas , Animales , Ratones , Saponinas/farmacología , Saponinas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Células CACO-2 , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Masculino , Glucemia/efectos de los fármacos , Glucosa/metabolismo , Absorción Intestinal/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Vaciamiento Gástrico/efectos de los fármacos , Frutas/química , Ratones Endogámicos ICR
16.
Small ; : e2312281, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456782

RESUMEN

The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2 AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1  cm-2 , superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8  nA cm-1  s-1  V-1 , 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.

17.
BMC Pulm Med ; 24(1): 120, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448844

RESUMEN

BACKGROUND: A significant reduction in regional cerebral oxygen saturation (rSO2) is commonly observed during one-lung ventilation (OLV), while positive end-expiratory pressure (PEEP) can improve oxygenation. We compared the effects of three different PEEP levels on rSO2, pulmonary oxygenation, and hemodynamics during OLV. METHODS: Forty-three elderly patients who underwent thoracoscopic lobectomy were randomly assigned to one of six PEEP combinations which used a crossover design of 3 levels of PEEP-0 cmH2O, 5 cmH2O, and 10 cmH2O. The primary endpoint was rSO2 in patients receiving OLV 20 min after adjusting the PEEP. The secondary outcomes included hemodynamic and respiratory variables. RESULTS: After exclusion, thirty-six patients (36.11% female; age range: 60-76 year) were assigned to six groups (n = 6 in each group). The rSO2 was highest at OLV(0) than at OLV(10) (difference, 2.889%; [95% CI, 0.573 to 5.204%]; p = 0.008). Arterial oxygen partial pressure (PaO2) was lowest at OLV(0) compared with OLV(5) (difference, -62.639 mmHg; [95% CI, -106.170 to -19.108 mmHg]; p = 0.005) or OLV(10) (difference, -73.389 mmHg; [95% CI, -117.852 to -28.925 mmHg]; p = 0.001), while peak airway pressure (Ppeak) was lower at OLV(0) (difference, -4.222 mmHg; [95% CI, -5.140 to -3.304 mmHg]; p < 0.001) and OLV(5) (difference, -3.139 mmHg; [95% CI, -4.110 to -2.167 mmHg]; p < 0.001) than at OLV(10). CONCLUSIONS: PEEP with 10 cmH2O makes rSO2 decrease compared with 0 cmH2O. Applying PEEP with 5 cmH2O during OLV in elderly patients can improve oxygenation and maintain high rSO2 levels, without significantly increasing peak airway pressure compared to not using PEEP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200060112 on 19 May 2022.


Asunto(s)
Ventilación Unipulmonar , Cirugía Torácica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Saturación de Oxígeno , Respiración con Presión Positiva , Intercambio Gaseoso Pulmonar , Estudios Cruzados
18.
Angew Chem Int Ed Engl ; 63(20): e202401819, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38409658

RESUMEN

Density functional theory (DFT) calculations demonstrate neighboring Pt atoms can enhance the metal activity of NiCoP for hydrogen evolution reaction (HER). However, it remains a great challenge to link Pt and NiCoP. Herein, we introduced curvature of bowl-like structure to construct Pt/NiCoP interface by adding a minimal 1 ‰-molar-ratio Pt. The as-prepared sample only requires an overpotential of 26.5 and 181.6 mV to accordingly achieve the current density of 10 and 500 mA cm-2 in 1 M KOH. The water dissociation energy barrier (Ea) has a ~43 % decrease compared with NiCoP counterpart. It also shows an ultrahigh stability with a small degradation rate of 10.6 µV h-1 at harsh conditions (500 mA cm-2 and 50 °C) after 3000 hrs. X-ray photoelectron spectroscopy (XPS), soft X-ray absorption spectroscopy (sXAS), and X-ray absorption fine structure (XAFS) verify the interface electron transfer lowers the valence state of Co/Ni and activates them. DFT calculations also confirm the catalytic transition step of NiCoP can change from Heyrovsky (2.71 eV) to Tafel step (0.51 eV) in the neighborhood of Pt, in accord with the result of the improved Hads at the interface disclosed by in situ electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) tests.

19.
Sci Adv ; 10(6): eadi0175, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335285

RESUMEN

The direct observation of a solid-state chemical reaction can reveal otherwise hidden mechanisms that control the reaction kinetics. However, probing the chemical bond breaking and formation at the molecular level remains challenging because of the insufficient spatial-temporal resolution and composition analysis of available characterization methods. Using atomic-resolution differential phase-contrast imaging in scanning transmission electron microscopy, we have visualized the decomposition chemistry of K2PtCl4 to identify its transient intermediate phases and their interfaces that characterize the chemical reduction process. The crystalline structure of K2PtCl4 is found to undergo a disproportionation reaction to form K2PtCl6, followed by gradual reduction to crystalline Pt metal and KCl. By directly imaging different Pt─Cl bond configurations and comparing them to models predicted via density functional theory calculations, a causal connection between the initial and final states of a chemical reaction is established, showcasing new opportunities to resolve reaction pathways through atomistic experimental visualization.

20.
Nano Lett ; 24(7): 2157-2164, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319745

RESUMEN

Carbon support is essential for electrocatalysis, but limitations remain, as carbon corrosion can lead to electrocatalyst degradation and affect the long-term durability of electrocatalysts. Here, we studied the corrosion dynamics of carbon nanotubes (CNTs) and Vulcan carbon (VC) together with platinum (Pt) nanoparticles in real time by liquid cell (LC) transmission electron microscopy (TEM). The results showed that CNTs with a high degree of graphitization exhibited higher corrosion resistance compared to VC. Furthermore, we observed that the main degradation path of Pt nanoparticles in Pt/CNTs was ripening, while in Pt/VC, it was aggregation and coalescence, which was dominated by the interactions between Pt nanoparticles and different hybridization of carbon supports. Finally, we performed an ex situ CV stability test to confirm the conclusions obtained from in situ experiments. This work provides deep insights into the corrosion mechanism of carbon-supported electrocatalysts to optimize the design of electrocatalysts with a higher durability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...