RESUMEN
BACKGROUND: Tumour invading muscle in head and neck squamous cell carcinoma (HNSCC) is often associated with destructive growth and poor prognosis. However, the phenotypic functions and pathological mechanisms of muscle-invasive cancer cells in tumour progress remains unknown. In this study, we aimed to investigate the phenotypic functions of muscle-invasive cancer cells of HNSCC and their potential crosstalk with tumour microenvironment. METHODS: We obtained scRNA-seq data (SC) from GSE103322 (N = 18) and GSE181919 (N = 37), spatial RNA-seq data (ST) from GSE208253 and GSE181300 (N = 4), transcriptomics of human HNSCC samples from GSE42743 (N = 12) and GSE41613 (N = 97). Utilizing the TCGA-HNSC dataset, we conducted univariate and multivariate Cox analyses to investigate the prognostic impact of muscle-invasion in HNSCC, with validation in an additional cohort. Through Stutility and AUCell approaches, we identified and characterized muscle-invasive cancer cell clusters, including their functional phenotypes and gene-specific profiles. Integration of SC and ST data was achieved using Seurat analysis, multimodal intersection analysis, and spatial deconvolution. The results were further validated via in vitro and in vivo experiments. RESULTS: Our analyses of the TCGA-HNSC cohort revealed the presence of muscle-invasion was associated with a poor prognosis. By combining ST and SC, we identified muscle-invasive cancer cells exhibiting epithelial-to-mesenchymal transition (EMT) and myoepithelial-like transcriptional programs, which were correlated with a poor prognosis. Furthermore, we identified G0S2 as a novel marker of muscle-invasive malignant cells that potentially promotes EMT and the acquisition of myoepithelium-like phenotypes. These findings were validated through in vitro assays and chorioallantoic membranes experiments. Additionally, we demonstrated that G0S2-overexpressing cancer cells might attract human ECs via VEGF signalling. Subsequent in vitro and in vivo experiments revealed G0S2 plays key roles in promoting the proliferation and invasion of cancer cells. CONCLUSIONS: In this study, we profiled the transcriptional programs of muscle-invasive HNSCC cell populations and characterized their EMT and myoepithelial-like phenotypes. Furthermore, our findings highlight the presence of muscle-invasion as a predictive marker for HNSCC patients. G0S2 as one of the markers of muscle-invasive cancer cells is involved in HNSCC intravasation, probably via VEGF signalling.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Línea Celular Tumoral , Animales , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Pronóstico , Músculos/patología , Transición Epitelial-Mesenquimal/genética , Femenino , MasculinoRESUMEN
Accurate identification of antifreeze proteins (AFPs) is crucial in developing biomimetic synthetic anti-icing materials and low-temperature organ preservation materials. Although numerous machine learning-based methods have been proposed for AFPs prediction, the complex and diverse nature of AFPs limits the prediction performance of existing methods. In this study, we propose AFP-Deep, a new deep learning method to predict antifreeze proteins by integrating embedding from protein sequences with pre-trained protein language models and evolutionary contexts with hybrid feature extraction networks. The experimental results demonstrated that the main advantage of AFP-Deep is its utilization of pre-trained protein language models, which can extract discriminative global contextual features from protein sequences. Additionally, the hybrid deep neural networks designed for protein language models and evolutionary context feature extraction enhance the correlation between embeddings and antifreeze pattern. The performance evaluation results show that AFP-Deep achieves superior performance compared to state-of-the-art models on benchmark datasets, achieving an AUPRC of 0.724 and 0.924, respectively.
RESUMEN
Developing electrocatalysts with excellent activity and stability for water splitting in acidic media remains a formidable challenge due to the sluggish kinetics and severe dissolution. As a solution, a multi-component doped RuO2 prepared through a process of dealloying-annealing is presented. The resulting multi-doped RuO2 possesses a nanoporous structure, ensuring a high utilization efficiency of Ru. Furthermore, the dopants can regulate the electronic structure, causing electron aggregation around unsaturated Ru sites, which mitigates Ru dissolution and significantly enhances the catalytic stability/activity. The representative catalyst (FeCoNiCrTi-RuO2) shows an overpotential of 167 mV at 10 mA cm-2 for oxygen evolution reaction (OER) in 0.5 m H2SO4 solution with a Tafel slope of 53.1 mV dec-1, which is among the highest performance reported. Moreover, it remains stable for over 200 h at a current density of 10 mA cm-2. This work presents a promising approach for improving RuO2-based electrocatalysts, offering a crucial advancement for electrochemical water splitting.
RESUMEN
In brief: Genes expressed in cumulus cells might be used as markers for competent oocytes/embryos. This study identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos. Abstract: Studies on the mechanisms behind cumulus expansion and cumulus cell (CC) apoptosis are essential for understanding the mechanisms for oocyte maturation. Genes expressed in CCs might be used as markers for competent oocytes and/or embryos. In this study, both in vitro (IVT) and in vivo (IVO) mouse oocyte models with significant difference in cumulus expansion and CC apoptosis were used to identify and validate new genes regulating cumulus expansion and CC apoptosis of mouse oocytes. We first performed mRNA sequencing and bioinformatic analysis using the IVT oocyte model to identify candidate genes. We then analyzed functions of the candidate genes by RNAi or gene overexpression to select the candidate cumulus expansion and CC apoptosis-regulating genes. Finally, we validated the cumulus expansion and CC apoptosis-regulating genes using the IVO oocyte model. The results showed that while Spp1, Sdc1, Ldlr, Ezr and Mmp2 promoted, Bmp2, Angpt2, Edn1, Itgb8, Cxcl10 and Agt inhibited cumulus expansion. Furthermore, Spp1, Sdc1 and Ldlr inhibited CC apoptosis. In conclusion, by using both IVT and IVO oocyte models, we have identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos and for elucidating the molecular mechanisms behind oocyte maturation.
Asunto(s)
Apoptosis , Células del Cúmulo , Perfilación de la Expresión Génica , Oocitos , Animales , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Oocitos/fisiología , Ratones , Femenino , Técnicas de Maduración In Vitro de los Oocitos , Sindecano-1/metabolismo , Sindecano-1/genética , Oogénesis/genética , OsteopontinaRESUMEN
Understanding the mechanisms for oocyte maturation and optimizing the protocols for in vitro maturation (IVM) are greatly important for improving developmental potential of IVM oocytes. The miRNAs expressed in cumulus cells (CCs) play important roles in oocyte maturation and may be used as markers for selection of competent oocytes/embryos. Although a recent study from our group identified several new CCs-expressed miRNAs that regulate cumulus expansion (CE) and CC apoptosis (CCA) in mouse oocytes, validation of these findings and further investigation of mechanisms of action in other model species was essential before wider applications. By using both in vitro and in vivo pig oocyte models with significant differences in CE, CCA and developmental potential, the present study validated that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes. We demonstrated that miR-149 and miR-31 targeted SMAD family member 6 (SMAD6) and transforming growth factor ß2 (TGFB2), respectively, in the transforming growth factor-ß (TGF-ß) signaling. Furthermore, both miR-149 and miR-31 increased CE and decreased CCA via activating SMAD family member 2 (SMAD2) and increasing the expression of SMAD2 and SMAD family member 4. In conclusion, the present results show that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes by activating the TGF-ß signaling, suggesting that they might be used as markers for pig oocyte quality.
Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos , MicroARNs , Oocitos , Animales , Femenino , Células del Cúmulo/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , MicroARNs/genética , MicroARNs/metabolismo , Oocitos/fisiología , Porcinos , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Accurately predicting protein-ATP binding residues is critical for protein function annotation and drug discovery. Computational methods dedicated to the prediction of binding residues based on protein sequence information have exhibited notable advancements in predictive accuracy. Nevertheless, these methods continue to grapple with several formidable challenges, including limited means of extracting more discriminative features and inadequate algorithms for integrating protein and residue information. To address the problems, we propose ATP-Deep, a novel protein-ATP binding residues predictor. ATP-Deep harnesses the capabilities of unsupervised pre-trained language models and incorporates domain-specific evolutionary context information from homologous sequences. It further refines the embedding at the residue level through integration with corresponding protein-level information and employs a contextual-based co-attention mechanism to adeptly fuse multiple sources of features. The performance evaluation results on the benchmark datasets reveal that ATP-Deep achieves an AUC of 0.954 and 0.951, respectively, surpassing the performance of the state-of-the-art model. These findings underscore the effectiveness of assimilating protein-level information and deploying a contextual-based co-attention mechanism grounded in context to bolster the prediction performance of protein-ATP binding residues.
Asunto(s)
Algoritmos , Proteínas , Unión Proteica , Proteínas/química , Secuencia de Aminoácidos , Adenosina TrifosfatoRESUMEN
It is known that the oocyte has a limited capacity to acquire and metabolize glucose, and it must rely on cumulus cells (CCs) to take up glucose and produce pyruvate for use to produce ATP through oxidative phosphorylation. We therefore propose that miRNAs might regulate glucose metabolism (GM) in CCs and might be used as markers for oocyte quality assessment. Here, mouse CC models with impaired glycolysis or pentose phosphate pathway (PPP) were established, and miRNAs targeting the key enzymes in glycolysis/PPP were predicted using the miRNA target prediction databases. Expression of the predicted miRNAs was compared between CCs with normal and impaired glycolysis/PPP to identify candidate miRNAs. Function of the candidate miRNAs was validated by transfecting CCs or cumulus-oocyte-complexes (COCs) with miRNA inhibitors and observing effects on glucose metabolites of CCs and on competence of oocytes. The results validated that miR-23b-3p, let-7b-5p, 34b-5p and 145a-5p inhibited glycolysis, and miR-24-3p, 3078-3p,183-5p and 7001-5p inhibited PPP of CCs. Our observation using a more physiologically relevant model (intact cultured COCs) further validated the four glycolysis-targeting miRNAs we identified. Furthermore, miR-let-7b-5p, 34b-5p and 145a-5p may also inhibit PPP, as they decreased the production of glucose-6-phosphate. In conclusion, miRNAs play critical roles in GM of CCs and may be used as markers for oocyte quality assessment. Summary sentence: We identified and validated eight new miRNAs that inhibit glycolysis and/or pentose phosphate pathways in cumulus cells (CCs) suggesting that miRNAs play critical roles in glucose metabolism of CCs and may be used for oocyte quality markers.
Asunto(s)
Células del Cúmulo , Glucosa , Glucólisis , MicroARNs , Animales , Células del Cúmulo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Glucosa/metabolismo , Femenino , Glucólisis/fisiología , Vía de Pentosa Fosfato , Oocitos/metabolismoRESUMEN
Macrophages are heterogeneous cells that play multifaceted roles in cancer progression and metastasis. However, the phenotypic diversity of tumor-associated macrophages (TAMs) in head and neck squamous carcinomas (HNSCC) remains poorly characterized. Here, we comprehensively analyzed the HNSCC single-cell transcriptomic dataset (GSE172577) and identified 5 subsets of myeloid-driven cells as TAMs using Seurat. Deciphering the lineage trajectory of TAMs, we revealed that FCN1+ TAMs could give rise to pro-angiogenesis SPP1+CCL18+ and SPP1+FOLR2+ populations through SPP1-CCL18+ and CXCL9+CXCL10+ TAMs. SPP1+CCL18+ and SPP1+FOLR2+ TAMs harbored pro-angiogenic and metastatic transcriptional programs and were correlated with poor survival of HNSCC patients. Our immunostaining examination revealed that infiltration of SPP1+ TAMs is associated with lymph node metastasis and poor prognosis in patients with HNSCC. Cell-cell communication analysis implied that SPP1+ TAM populations may employ SPP1 signaling to activate metastasis-related ECs. In vitro and in vivo studies, we demonstrated that SPP1hi TAMs enhanced tumor intravasation and metastasis in HNSCC in a manner dependent on the secretion of SPP1, CCL18, and CXCL8. Taken together, our study characterized the cellular heterogeneity of TAM populations and identified two SPP1+ TAM populations that play key roles in HNSCC intravasation and metastasis and serve as predictive markers for patients with HNSCC.
Asunto(s)
Receptor 2 de Folato , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral , Transducción de Señal , Comunicación Celular , Neoplasias de Cabeza y Cuello/genética , OsteopontinaRESUMEN
BACKGROUND: Although the roles of PD-L1 in promoting tumor escape from immunosurveillance have been extensively addressed, its non-immune effects on tumor cells remain unclear. METHODS: The spatial heterogeneity of PD-L1 staining in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) tissues was identified by immunohistochemistry. Three-dimensional (3D) specific cell-led invasion assay and 3D cancer spheroid model were used to investigate the roles of PD-L1hileader cells in collective invasion. The impact of M1 macrophages on specific PD-L1 expression in leader cells and its mechanisms were further studied. Finally, the effect of combination therapy of anti-PD-L1 and CDK4 inhibitor on HPV-positive tumors were evaluated on a mice model. RESULTS: Here, we observed a distinctive marginal pattern of PD-L1 expression in HPV-positive HNSCC tissues. By mimicking this spatial pattern of PD-L1 expression in the 3D invasion assay, we found that PD-L1hi cells led the tumor collective invasion. M1 macrophages induced specific PD-L1 expression in leader cells, and depletion of macrophages in tumor-bearing mice abrogated PD-L1hileader cells and collective invasion. Mechanistically, TNF-α secreted by M1 macrophages markedly increased the abundance of PD-L1 via CDK4/ubiquitin-specific peptidase 14-mediated deubiquitination of PD-L1. We also found that suppression of CDK4 enhanced the efficacy of anti-PD-L1 therapy in an E6/E7 murine model. CONCLUSIONS: Our study identified TNF-α/CDK4/ubiquitin-specific peptidase 14-mediated PD-L1 stability as a novel mechanism underlying M1 macrophage-induced PD-L1hileader cells and collective tumor invasion, and highlighted the potential of the combination therapy of anti-PD-L1 and CDK4 inhibitor for HPV-positive HNSCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello , Factor de Necrosis Tumoral alfa , Antígeno B7-H1 , Infecciones por Papillomavirus/complicaciones , Carcinoma de Células Escamosas/metabolismo , Macrófagos/metabolismo , Proteasas Ubiquitina-Específicas , Quinasa 4 Dependiente de la CiclinaRESUMEN
Cu2Se nanosheets were coated on the surface of Ni(OH)2 nanocages (NCs) by ion exchange driven by selenium incorporation. The resulting Ni(OH)2@Cu2Se hollow heterostructures (Ni(OH)2@Cu2Se HHSs) showed high electrical conductivity and electrocatalytic activities derived from the synergistic effects of Ni/Cu phases. These structures enhanced glucose adsorption abilities, confirmed by density function theory (DFT) calculations, and the robustness of the integrated nano-electrocatalyst. Remarkably, Ni(OH)2@Cu2Se HHSs modified electrodes excited excellent glucose sensing behavior with a wide linear range (0.001-7.5 mM), a sensitivity up to 2420.4 Μa mM-1 cm2, a low limit of detection (LOD, 0.15 µM), and fast response (less 2 s). Furthermore, Ni(OH)2@Cu2Se HHSs competently analyzed glucose in serum and beverages with good recoveries ranging from 94.4 to 103.6%. Integrating copper selenide and Ni-based materials as 3D hollow heterostructures expands the selection of electrocatalysts for sensitive glucose detection in food and biological samples.
Asunto(s)
Glucosa , Níquel , Bebidas , Electrodos , Intercambio Iónico , Níquel/química , Compuestos de Selenio/química , Cobre/químicaRESUMEN
Previous studies show that stressful events after ovulation in sows significantly impaired the embryo cleavage with a significant elevation of blood cortisol. However, the effects of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol on fertilization and embryo development remain to be specified, and whether they damage pig embryos directly or indirectly is unclear. This study demonstrated that embryo development was unaffected when pig parthenotes were cultured with different concentrations of CRH/ACTH/cortisol. However, embryo development was significantly impaired when the embryos were cocultured with pig oviductal epithelial cells (OECs) in the presence of CRH/cortisol or cultured in medium that was conditioned with CRH/cortisol-pretreated OECs (CRH/cortisol-CM). Fertilization in CRH/cortisol-CM significantly increased the rates of polyspermy. CRH and cortisol induced apoptosis of OECs through FAS and TNFα signaling. The apoptotic OECs produced less growth factors but more FASL and TNFα, which induced apoptosis in embryos. Pig embryos were not sensitive to CRH because they expressed no CRH receptor but the CRH-binding protein, and they were tolerant to cortisol because they expressed more 11-beta hydroxysteroid dehydrogenase 2 (HSD11B2) than HSD11B1. When used at a stress-induced physiological concentration, while culture with either CRH or cortisol alone showed no effect, culture with both significantly increased apoptosis in OECs. In conclusion, CRH and cortisol impair pig fertilization and preimplantation embryo development indirectly by inducing OEC apoptosis via the activation of the FAS and TNFα systems. ACTH did not show any detrimental effect on pig embryos, nor OECs.
Asunto(s)
Hormona Liberadora de Corticotropina , Oviductos , Animales , Femenino , Embarazo , Hormona Adrenocorticotrópica/farmacología , Apoptosis , Hormona Liberadora de Corticotropina/metabolismo , Desarrollo Embrionario/fisiología , Hidrocortisona/farmacología , Hidrocortisona/metabolismo , Oviductos/metabolismo , PorcinosRESUMEN
PURPOSE: To study the role of target genes with aberrant DNA methylation in HPV+ HNSCC. METHODS: A HumanMethylation450 BeadChip array (Illumina) was used to identify differentially methylated genes. CCK-8, flow cytometry, wound healing, and cell invasion assays were conducted to analyze the biological roles of PRKCZ. Western blot, qRT-PCR, immunohistochemistry, and animal studies were performed to explore the mechanisms underlying the functions of PRKCZ. RESULTS: We selected PRKCZ, which is associated with HPV infection, as our target gene. PRKCZ was hypermethylated in HPV+ HNSCC patients, and PRKCZ methylation status was negatively related to the pathological grading of HNSCC patients. Silencing PRKCZ inhibited the malignant capacity of HPV+ HNSCC cells. Mechanistically, HPV might promote DNMT1 expression via E6 to increase PRKCZ methylation. Cdc42 was required for the PRKCZ-mediated mechanism of action, contributing to the occurrence of epithelial-mesenchymal transition (EMT) in HPV+ HNSCC cells. In addition, blocking PRKCZ delayed tumor growth in HPV16-E6/E7 transgenic mice. Cdc42 expression was decreased, whereas E-cadherin levels increased. CONCLUSION: We suggest that PRKCZ hypermethylation induces EMT via Cdc42 to act as a potent tumor promoter in HPV+ HNSCC.
RESUMEN
The 18-electron rule states that metal complexes with 18 valence electron metal centers are thermodynamically stable because nine valence orbitals of transition metals including one s orbital, three p orbitals, and five d orbitals can collectively accommodate 18 electrons, achieving the same electron configuration as the noble gas in the period. Thus, 20-electron compounds are extremely rare due to a violation of such a rule. Here, we demonstrate a 20-electron metallaazulyne via density functional theory calculations stabilized by aromaticity, which was supported by various aromaticity indices including nucleus-independent chemical shift, anisotropy of the induced current density, the isochemical shielding surface, and electron density of delocalized bonds. Interestingly, when a transition metal fragment is first introduced into the aromatic azulyne molecule, the resulting osmaazulyne becomes antiaromatic, in sharp contrast to the previous transformation from pentalyne to metallapentalyne. More interestingly, when osmaazulyne is reduced by two electrons, the resulting 20e osmaazulyne becomes aromatic. Our findings highlight an important application of aromaticity in stabilizing 20e species, inviting experimental verification.
RESUMEN
Most studies on mechanisms by which prenatal stress affects offspring behavior were conducted during late pregnancy using in vivo models; studies on the effect of preimplantation stress are rare. In vivo models do not allow accurate specification of the roles of different hormones and cells within the complicated living organism, and cannot verify whether hormones act directly on embryos or indirectly to alter progeny behavior. Furthermore, the number of anxiety-related miRNAs identified are limited. This study showed that both mouse embryculture with corticosterone (ECC) and maternal preimplantation restraint stress (PIRS) increased anxiety-like behavior (ALB) while decreasing hippocampal expression of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) in offspring. ECC/PIRS downregulated GR and BDNF expression by increasing miR-211-5p expression via promoter demethylation of its host gene Trpm1, and this epigenetic cell fate determination was exclusively perpetuated during development into mature hippocampus. Transfection with miR-211-5p mimic/inhibitor in cultured hippocampal cell lines confirmed that miR-211-5p downregulated Gr and Bdnf. Intrahippocampal injection of miR-211-5p agomir/antagomir validated that miR-211-5p dose-dependently increased ALB while decreasing hippocampal GR/BDNF expression. In conclusion, preimplantation exposure to glucocorticoids increased ALB by upregulating miR-211-5p via Trpm1 demethylation, and miR-211-5p may be used as therapeutic targets and biomarkers for anxiety-related diseases.
RESUMEN
Following the publication of this article, the authors have realized that they made an error during the compilation of the images shown in Fig. 6, and that this error was not corrected before the paper was sent to press. Specifically, in Fig. 6B, the data panels showing the results from the HUVEC + SACC83 siDll4 and HUVEC + SACCLM siDll4 experiments at 24 h were inadvertently repeated. The corrected version of Fig. 6, showing the correctly assembled data panels for Fig. 6B, is shown on the next page. The authors sincerely apologize for the errors that were introduced during the preparation of this Figure, thank the Editor for allowing them the opportunity to publish this Corrigendum, and regret any inconvenience that these errors may have caused. [the original article was published in Oncology Reports 45: 10111022, 2021; DOI: 10.3892/or.2021.7939].
RESUMEN
[This corrects the article DOI: 10.3389/fonc.2018.00492.].
RESUMEN
CXCR5 played critical roles in tumorigenesis and metastasis. Nevertheless, little was known about the involvement of CXCR5 in perineural invasion (PNI) of salivary adenoid cystic carcinoma (SACC). Here, we confirmed upregulation of CXCR5 in SACC specimens and cells and identified that CXCR5 exhibited a significant positive correlation with PNI. Functionally, knockdown of CXCR5 suppressed SACC cells migration, invasion and PNI ability, whereas CXCR5 overexpression displayed the opposite effects. Moreover, CXCR5 downregulated microRNA (miR)-187, which could competitively sponge S100A4. The PNI-inhibitory effect of CXCR5 knockdown or miR-187 overexpression could be reversed by elevated expression of S100A4. Conjointly, our data revealed that CXCR5 facilitated PNI through downregulating miR-187 to disinhibit S100A4 expression in SACC.
Asunto(s)
Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/patología , MicroARNs/metabolismo , Receptores CXCR5/metabolismo , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Secuencia de Bases , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica , Modelos de Riesgos Proporcionales , Células de Schwann/metabolismo , Células de Schwann/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Patients were prone to have poor prognosis once dormant tumor cells being reactivated. However, the molecular mechanism of tumor cell dormancy remains poorly understood. This study aimed to investigate the function of DEC2 in the dormancy of salivary adenoid cystic carcinoma (SACC) in vitro and vivo. METHODS: The function of DEC2 in tumor dormancy of SACC was investigated in nude mice by establishing primary and lung metastasis model. Meanwhile, the interaction between hypoxia and SACC dormancy and the role of DEC2 were demonstrated through CoCl2 induced hypoxia-mimicking microenvironments. Furthermore, the expression of DEC2 was detected by immunohistochemical staining in primary SACC samples with and without recurrence. RESULTS: In the primary SACC, DEC2 overexpression inhibited cell proliferation, increased cell population arrested in G0/G1 phase, and participated in dormancy regulation, which limited tumor growth. Intriguingly, in the model of lung metastasis, the level of DEC2 was reduced significantly and resulted in dormancy exit and growth resumption of SACC cells. Then, we found that DEC2 may associate with hypoxia in contributing to tumor dormancy, which might provide a possible cue to explain the different roles of DEC2 in primary and metastasis lesions. And overexpression of DEC2 induced dormancy and promoted migration and invasion through activating EMT program. Finally, DEC2 positive expression was shown to be significantly correlated with recurrence and dormancy of SACC patients. CONCLUSIONS: These findings provide a novel insight into the role of DEC2 gene in tumor dormancy and metastasis.