Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1404123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966421

RESUMEN

Background: Renshen Yangrong decoction (RSYRD) has been shown therapeutic effects on secondary malaise and fatigue (SMF). However, to date, its bioactive ingredients and potential targets remain unclear. Purpose: The purpose of this study is to assess the potential ingredients and targets of RSYRD on SMF through a comprehensive strategy integrating network pharmacology, Mendelian randomization as well as molecular docking verification. Methods: Search for potential active ingredients and corresponding protein targets of RSYRD on TCMSP and BATMAN-TCM for network pharmacology analysis. Mendelian randomization (MR) was performed to find therapeutic targets for SMF. The eQTLGen Consortium (sample sizes: 31,684) provided data on cis-expression quantitative trait loci (cis-eQTL, exposure). The summary data on SMF (outcome) from genome-wide association studies (GWAS) were gathered from the MRC-IEU Consortium (sample sizes: 463,010). We built a target interaction network between the probable active ingredient targets of RSYRD and the therapeutic targets of SMF. We next used drug prediction and molecular docking to confirm the therapeutic value of the therapeutic targets. Results: In RSYRD, network pharmacology investigations revealed 193 possible active compounds and 234 associated protein targets. The genetically predicted amounts of 176 proteins were related to SMF risk in the MR analysis. Thirty-seven overlapping targets for RSYRD in treating SMF, among which six (NOS3, GAA, IMPA1, P4HTM, RB1, and SLC16A1) were prioritized with the most convincing evidence. Finally, the 14 active ingredients of RSYRD were identified as potential drug molecules. The strong affinity between active components and putative protein targets was established by molecular docking. Conclusion: This study revealed several active components and possible RSYRD protein targets for the therapy of SMF and provided novel insights into the feasibility of using Mendelian randomization for causal inference between Chinese medical formula and disease.

2.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963035

RESUMEN

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Liposomas , Neoplasias Pulmonares , Aglutinina de Mani , Cisplatino/farmacología , Cisplatino/administración & dosificación , Liposomas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Aglutinina de Mani/química , Línea Celular Tumoral , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Femenino , Sistemas de Liberación de Medicamentos/métodos
3.
Int J Nanomedicine ; 19: 5125-5138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855730

RESUMEN

Purpose: Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods: Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results: The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion: In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Doxorrubicina , Liposomas , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Humanos , Ratones , Liposomas/química , Células MCF-7 , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Células 3T3 NIH , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Tamaño de la Partícula , Sistema de Administración de Fármacos con Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Movimiento Celular/efectos de los fármacos , Nanopartículas/química
4.
Front Pharmacol ; 15: 1285012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515853

RESUMEN

Background: The application of ferric citrate therapy has yielded unexpected benefits in recent years for Chronic kidney disease patients suffering from hyperphosphatemia and iron deficiency -anaemia. Despite this, earlier research on the impact of ferric citrate on NDD-CKD has been contentious. Objective: The goal of the meta-analysis is to evaluate the evidence regarding the advantages and dangers of ferric citrate for the treatment of hyperphosphatemia and iron deficiency anaemia in NDD-CKD patients. Methods: Between the start of the study and June 2022, we searched PubMed, Embase, Cochrane, EBSCO, Scopus, Web of Science, Wan Fang Data, CNKI, and VIP databases for randomised controlled trials of iron citrate for hyperphosphatemia and anaemia in patients with NDD-CKD. For binary categorical data, risk ratios (OR) were employed, and for continuous variables, weighted mean differences The effect sizes for both count and measurement data were expressed using 95% confidence intervals Results: The meta-analysis includes eight trials with a total of 1281 NDD-CKD patients. The phosphorus-lowering effect of ferric citrate was greater compared to the control group (WMD, -0.55, 95% CI, -0.81 to -0.28; I2 = 86%, p < 0.001). Calcium (WMD, 0.092; 95% CI, -0.051 to 0.234; p > 0.05; I2 = 61.9%), PTH (WMD, -0.10; 95% CI, -0.44 to 0.23; I2 = 75%, p > 0.05) and iFGF23 (WMD, -7.62; 95% CI, -21.18 to 5.94; I2 = 20%, p > 0.05) levels were not statistically different after ferric citrate treatment compared to control treatment. Furthermore, ferric citrate increased iron reserves and haemoglobin. The ferric citrate group had considerably greater levels than the controls. Ferric citrate, on the other hand, may raise the risk of constipation, diarrhoea, and nausea. Conclusion: This meta-analysis found that ferric citrate had a beneficial effect in the treatment of NDD-CKD, particularly in reducing blood phosphorus levels when compared to a control intervention. It also shown that ferric citrate has a favourable effect on iron intake and anaemia management. In terms of safety, ferric citrate may increase the likelihood of gastrointestinal side effects.

5.
Drug Deliv Transl Res ; 14(9): 2386-2402, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38236508

RESUMEN

During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.


Asunto(s)
Berberina , Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Doxorrubicina , Ácido Glicirretínico , Liposomas , Neoplasias Hepáticas , Berberina/administración & dosificación , Berberina/farmacocinética , Berberina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacología , Ácido Glicirretínico/administración & dosificación , Ácido Glicirretínico/química , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Humanos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células 3T3 NIH , Liberación de Fármacos , Tamaño de la Partícula , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/química , Sistemas de Liberación de Medicamentos
6.
Hum Vaccin Immunother ; 19(2): 2235926, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549923

RESUMEN

Streptococcus pneumoniae causes a considerable disease burden among children in China. Many isolates exhibit antimicrobial resistance but are often serotypes covered by the 13-valent pneumococcal conjugate vaccine (PCV13). Because the approved infant immunization schedule in China allows PCV13 vaccination only for those 6 weeks to 15 months of age, this phase 3 study was conducted to evaluate PCV13 immunogenicity and safety in unvaccinated older infants and children. Eligible participants were stratified by age into four cohorts: Cohort 1 (n = 125), 6 weeks-2 months; Cohort 2 (n = 354), 7-<12 months; Cohort 3 (n = 250), 1 -<2 years; Cohort 4 (n = 207), 2-<6 years. Cohort 1 received PCV13 at ages 2, 4, and 6 months; older cohorts were randomized 2:1 to PCV13 or Haemophilus influenzae type b (Hib) vaccine using age-appropriate schedules. Within-group immune responses were assessed by immunoglobulin G (IgG) concentrations and opsonophagocytic activity (OPA) titers. Safety evaluations included solicited reactogenicity events and adverse events (AEs). IgG geometric mean concentrations and OPA geometric mean titers for all 13 PCV13 serotypes increased for all participants vaccinated with PCV13, but not those vaccinated with Hib. Immune responses in Cohorts 2-4 were generally comparable with those in Cohort 1 (the infant series) for most serotypes. PCV13 was well tolerated across cohorts, with reported AEs consistent with expectations in these age groups; no new safety signals were identified. These results suggest that PCV13 administered as a catch-up regimen to infants and children 7 months-<6 years of age in China will effectively reduce vaccine-type pneumococcal disease in this population. NCT03574389.


Asunto(s)
Pueblos del Este de Asia , Inmunogenicidad Vacunal , Infecciones Neumocócicas , Vacunas Neumococicas , Niño , Preescolar , Humanos , Lactante , Anticuerpos Antibacterianos , Inmunoglobulina G , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/uso terapéutico , Streptococcus pneumoniae , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/uso terapéutico , Resultado del Tratamiento , Vacunas Combinadas/inmunología , Vacunas Combinadas/uso terapéutico
7.
Biochem Biophys Res Commun ; 677: 182-189, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597442

RESUMEN

Acellular extracellular matrices (aECM) are commonly utilized, both experimentally and clinically, in the regenerative medicine field. However, some disadvantages such as rapid degradation, poor mechanical properties, chronic inflammatory reactions and low antioxidant activity have limited their further application. In this study the feasibility of caffeic acid as a crosslinking agent in fixing small intestinal submucosa (SIS) was evaluated. The ninhydrin assay, swelling ratio and FTIR spectra indicated that caffeic acid can efficiently react with free amino groups to crosslink SIS and the highest crosslinking index reached 21.60 ± 1.37%. Moreover, the shrinkage temperature of SIS remarkably increased from 59 °C to about 80 °C and the degradation rate of CA-SIS was all lower than 6%, demonstrating their improved biostability and hydrothermal stability. Importantly, the antioxidant activity of CA-SIS ranged from 55% to 90%, statistically higher than that of native SIS (37.33 ± 2.94%). Additionally the cytotoxicity test presented that the cytotoxicity grade of CA-SIS was 1 or 0, whilst large numbers of living HUVECs were attached to the surface of the material and exhibited high cell viability. These results indicated their excellent cytocompatibility. The data of subcutaneous implant displayed that the number of inflammatory cells in 2%- and 2.5%CA-SIS groups remained at a low level (below 100 cells/field) while that of the native SIS group continued increasing, finally reaching 142.33 ± 30.92 cells/field. In conclusion, caffeic acid is a promising candidate for modifying aECM and may play a vital role in the design and fabrication of tissue engineering scaffolds.


Asunto(s)
Antioxidantes , Ácidos Cafeicos , Antioxidantes/farmacología , Estudios de Factibilidad , Ácidos Cafeicos/farmacología , Matriz Extracelular
8.
Mol Med Rep ; 28(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37326031

RESUMEN

All­trans retinoic acid (ATRA) has been implicated in the differentiation of hepatic stellate cells (HSCs). In the present study, the liver­targeting hyaluronic acid micelles (ADHG) were prepared for co­delivery of ATRA and doxorubicin (DOX) to block the HSC­hepatoma interrelation. To simulate the tumor microenvironment, an in vitro dual­cell model and an in vivo co­implantation mouse model were established for anticancer studies. The experimental methods involved the MTT assay, wound­healing assay, cellular uptake, flow cytometry and and in vivo antitumor study. The results revealed that the HSCs in the research models notably promoted tumor proliferation and migration. Furthermore, ADHG were readily internalized by cancer cells and HSCs simultaneously, and widely distributed in cancer regions. The in vivo antitumor studies demonstrated that ADHG could notably decrease HSC activation and extracellular matrix deposition, as well as constrain tumor growth and metastasis. Therefore, ATRA could facilitate DOX­induced anti­proliferation and anti­metastasis effects, and ADHG are a promising nano­sized formulation for the combination therapy of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Ácido Hialurónico , Ratones , Animales , Ácido Hialurónico/farmacología , Células Estrelladas Hepáticas , Tretinoina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno , Microambiente Tumoral
9.
Biomater Sci ; 11(14): 4890-4906, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306225

RESUMEN

Comprehensively regulating the TME is now regarded as a promising approach for cancer treatment. Herein, a novel "three-in-one" effect is presented for simultaneously killing tumor cells, inhibiting the EMT of CAFs, and improving immune responses. In this study, bortezomib (BTZ) is selected for the treatment of breast cancer; it has multiple pharmacological mechanisms for killing tumor cells through the NF-κB signaling pathway, inhibiting the activity of CAFs by activating caspase-3, and enhancing the function of CD8+ T cells by regulating the expression of immune-stimulating factors. To improve the druggability of BTZ in solid tumors, BTZ-loaded lipid/glycocholic acid mixed micelles (BTZ-LGs) were prepared to verify the "three-in-one" effect in killing tumor cells, inhibiting CAFs, and improving immune responses. In the present work, BTZ-LGs were verified to show enhanced in vitro cytotoxicity in both 4T1 cells and 4T1/NIH3T3 co-cultured cells, as well as a superior in vivo treatment effect in different tumor-bearing mouse models. Additionally, BTZ-LGs could regulate the expression of α-SMA, caspase-3, E-cadherin, and N-cadherin, indicating their good inhibiting ability on both tumor cells and CAFs. More importantly, immunological analysis revealed that BTZ-LGs promoted the expression of the immunostimulatory factor IL-2 in tumor tissues, activated anti-tumor T cells, and overcame tumor-induced CD8+ T cell dysfunction. All these findings suggest that BTZ-LGs can achieve a "three-in-one" effect in terms of killing tumor cells, suppressing CAFs, and improving immune responses. This simple and multi-effective therapeutic strategy offers a promising approach for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Micelas , Caspasa 3 , Células 3T3 NIH , Línea Celular Tumoral , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
J Biomed Mater Res A ; 111(3): 404-414, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36479810

RESUMEN

Recent efforts have focused on preparing drug-loaded hydrogel for wound healing. In order to obtain an ideal hydrogel dressing for skin wound repair, a carboxymethyl chitosan-gelatin hydrogel was prepared for co-delivery of SP (substance P) and DMOG (dimethyloxallyl glycine) by a chemical cross-linking method using genipin as the cross-linking agent. The synthesized hydrogels have good biocompatibility and physicochemical properties due to the low toxicity of the hydrogel material. The three-dimensional network structure of the hydrogels supports cell migration and proliferation, and the combination of SP and DMOG drugs exhibited strong effects on cell proliferation. Moreover, the co-loaded drug hydrogels could significantly promote wound healing in vivo, and provide a potential hydrogel for wound healing.


Asunto(s)
Quitosano , Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/química , Gelatina/farmacología , Gelatina/química , Sustancia P/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología
11.
Hum Vaccin Immunother ; 18(6): 2135929, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36441137

RESUMEN

Previous phase I to III clinical trials have shown that the inactivated SARS-CoV-2 vaccine namely CoronaVac has good efficacy, safety, and immunogenicity. This phase IV trial aims to evaluate the lot-to-lot consistency, immunogenicity, and safety on a commercial scale in healthy adults, which could provide data to support stable manufacturing. In this single-center, randomized, double-blind study, 1,080 healthy adults aged 26-45 years were randomly assigned into three groups to receive one of three lots of vaccines. All subjects received two doses of CoronaVac with an interval of 28 days. Serum samples were collected before the first dose and 28 days after the second dose to assess the immunogenicity. Solicited local and systemic adverse events (AEs) within 7 days and unsolicited AEs within 28 days after each dose of vaccination were recorded. A total of 1,039 participants completed the study and were included in the per-protocol set (PPS). The GMTs were 75.2 (68.5,82.6), 65.0 (59.0,71.7), and 65.3 (59.4,71.8), respectively, and the seroconversion rates of neutralizing antibody were all higher than 98%. The GMT ratios of each pair of lots were 1.16 (1.01,1.32), 1.15 (1.01, 1.32), and 0.99 (0.87, 1.14), respectively, meeting the immunological equivalence criteria. The incidence rates of adverse reactions (ARs) were 19.17%, 13.89%, and 18.33%, with no statistical difference. The ARs were all in grade 1 and grade 2, with incidences of 15.46% and 2.50%. Non-vaccine-related serious adverse events (SAEs) were reported. These results showed robust lot-to-lot consistency, immunogenicity, and safety. The stable production indicated that CoronaVac is suitable for large-scale use.Trial registration number: NCT04894227 (ClinicalTrials.gov).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Vacunas contra la COVID-19/efectos adversos , Método Doble Ciego , SARS-CoV-2 , COVID-19/prevención & control , Vacunas de Productos Inactivados/efectos adversos , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal , Anticuerpos Antivirales
12.
Front Pharmacol ; 13: 961788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188590

RESUMEN

Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment (TME). In hepatocellular carcinoma (HCC), quiescent hepatic stellate cells (HSCs) could be activated to become CAFs, which play a critical role in tumor progression and drug resistance. Therefore, recent efforts have been focused on combining anti-HSC and pro-apoptotic activities to improve anti-tumor efficacy of drugs. In this study, glycyrrhetinic acid and hyaluronic acid-modified liposomes (GA-HA-Lip) were prepared for co-delivery of curcumin (CUR) and berberine (BBR) for the treatment of HCC. Furthermore, we established the LX-2+BEL-7402 co-cultured cell model and implanted the m-HSCs+H22 cells into a mouse to evaluate the anti-tumor effect of CUR&BBR/GA-HA-Lip both in vitro and in vivo. The results showed that CUR&BBR/GA-HA-Lip could accumulate in tumor tissues and be taken up by HSCs and BEL-7402 cells simultaneously. Compared with free CUR, the combination therapy based on GA-HA-Lip exhibits stronger pro-apoptotic and anti-proliferation effect both in vitro and in vivo. The anti-tumor mechanistic study revealed that CUR&BBR/GA-HA-Lip could inhibit the activation of HSCs and restrain drug resistance of tumor cells. In summary, CUR&BBR/GA-HA-Lip could be a promising nano-sized formulation for anti-tumor therapy.

13.
ACS Appl Mater Interfaces ; 14(40): 45110-45123, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167351

RESUMEN

Hepatic stellate cells (HSCs), as an important part of the tumor microenvironment (TME), could be activated by tumor cells as cancer-associated fibroblasts (CAFs), thereby promoting the production of extracellular matrix (ECM) and favoring the development of tumors. Therefore, blocking the "CAFs-ECM" axis is a promising pathway to improve antitumor efficacy. Based on this, we developed a multifunctional nanosized delivery system composed of hyaluronic acid-modified pH-sensitive liposomes (CTHLs) and glycyrrheic acid-modified nanomicelles (DGNs), which combines the advantages of targeted delivery, pH-sensitivity, and deep drug penetration. To mimic actual TME, a novel HSCs+BEL-7402 cocultured cell model and a m-HSCs+H22 coimplanted mice model were established. As expected, CTHLs and DGNs could target CAFs and tumor cells, respectively, and promote the drug penetration and retention in tumor regions. Notably, CTHLs+DGNs not only exhibited a superior antitumor effect in three-level tumor-bearing mice but also presented excellent antimetastasis efficiency in lung-metastatic mice. The antitumor mechanism revealed that the lipid&micelle mixed formulations effectively inhibited the activation of CAFs, reduced the deposition of ECM, and reversed the epithelial-mesenchymal transition (EMT) of tumor cells. In brief, the nanosized delivery system composed of CTHLs and DGNs could effectively improve the therapeutic effect of liver cancer by blocking the "CAFs-ECM" axis, which has a good clinical application prospect.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Ácido Hialurónico/farmacología , Lípidos/farmacología , Liposomas/farmacología , Neoplasias Hepáticas/patología , Ratones , Micelas , Microambiente Tumoral
14.
Front Pharmacol ; 13: 893151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784721

RESUMEN

Tumor-associated antigen mucin 1 (MUC1) is highly expressed in colorectal cancer and is positively correlated with advanced stage at diagnosis and poor patient outcomes. The combination of irinotecan and capecitabine is standard chemotherapy for metastatic colorectal cancer and is known as XELIRI or CAPIRI, which significantly prolongs the progression-free survival and overall survival of colorectal cancer patients compared to a single drug alone. We previously reported that peanut agglutinin (PNA)-conjugated liposomes showed enhanced drug delivery efficiency to MUC1-positive liver cancer cells. In this study, we prepared irinotecan hydrochloride (IRI) and capecitabine (CAP)-coloaded liposomes modified by peanut agglutinin (IRI/CAP-PNA-Lips) to target MUC1-positive colorectal cancer. The results showed that IRI/CAP-PNA-Lips showed an enhanced ability to target MUC1-positive colorectal cancer cells compared to unmodified liposomes. Treatment with IRI/CAP-PNA-Lips also increased the proportion of apoptotic cells and inhibited the proliferation of colorectal cancer cells. The targeting specificity for tumor cells and the antitumor effects of PNA-modified liposomes were significantly increased in tumor-bearing mice with no severe cytotoxicity to normal tissues. These results suggest that PNA-modified liposomes could provide a new delivery strategy for the synergistic treatment of colorectal cancer with clinical chemotherapeutic agents.

15.
Int J Nanomedicine ; 17: 2559-2575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35698562

RESUMEN

Background: Tumor microenvironment (TME) plays a vital role in the development of hepatocellular carcinoma (HCC). Mounting evidence indicates that peripheral nerves could induce a shift from quiescent hepatic stellate cells (HSCs) to cancer-associated fibroblasts (CAFs) by secreting substance P (SP). The anti-tumor strategy by targeting "SP-HSCs-HCC" axis might be an effective therapy to inhibit tumor growth and metastasis. Objective: In this study, we prepared novel liposomes (CUR-APR/HA&GA-LPs) modified with hyaluronic acid (HA) and glycyrrhetinic acid (GA) for co-delivery aprepitant (APR) and curcumin (CUR), in which APR was chosen to inhibit the activation of HSCs by blocking SP/neurokinin-1 receptor (NK-1R), and CUR was used to induce apoptosis of tumor cells. Results: To mimic the TME, we established "SP+HSCs+HCC" co-cultured cell model in vitro. The results showed that CUR-APR/HA&GA-LPs could be taken up by CAFs and HCC simultaneously, and inhibit tumor cell migration. Meanwhile, the "SP+m-HSCs+HCC" co-implanted mice model was established to evaluate the anti-tumor effect in vivo. The results showed that CUR-APR/HA&GA-LPs could inhibit tumor proliferation and metastasis, and reduce extracellular matrix (ECM) deposition and tumor angiogenesis, indicating a superior anti-HCC effect. Conclusion: Overall, the combination therapy based on HA&GA-LPs could be a potential nano-sized formulation for anti-HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Curcumina , Ácido Glicirretínico , Neoplasias Hepáticas , Animales , Aprepitant , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Curcumina/farmacología , Ácido Hialurónico , Lipopolisacáridos , Liposomas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Microambiente Tumoral
16.
Recent Pat Anticancer Drug Discov ; 18(2): 200-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35538821

RESUMEN

BACKGROUND: Tumor metastasis is a main cause of death in patients with breast cancer. The cross-talk between cancer-associated fibroblasts (CAFs) and tumor cells plays an important role in promoting tumor invasion and metastasis. It is important to develop a novel delivery system to inhibit tumor development by simultaneously targeting both CAFs and tumor cells. OBJECTIVES: The main objective of this research was to prepare nanoparticles to inhibit tumor proliferation and migration by blocking the cross-talk of tumor-CAFs. Additionally, a novel "MCF- 7+NIH/3T3" mixed cell model was established to mimic the tumor microenvironment (TME). METHODS: In this study, the pH-responsive nanoparticles (MIF/DOX-sul-HA NPs) based on sulfated hyaluronic acid (sul-HA) polymers were prepared for co-delivery of doxorubicin (DOX) and mifepristone (MIF). The effects of anti-proliferation and anti-metastasis of MIF/DOX-sul-HA NPs were investigated both in vitro and in vivo. RESULTS: The results showed that MIF/DOX-sul-HA NPs were nearly spherical in shape with narrow particle size distribution and pH-responsive drug release, and could be taken up by both MCF-7 and NIH/3T3 cells. Compared with MCF-7 cells alone, the anti-tumor effect of single DOX was weak in the "MCF-7+NIH/3T3" mixed cell model. MIF/DOX-sul-HA NPs exhibited strong effects of anti-proliferation and anti-metastasis than the free single drug. CONCLUSION: The sul-HA nanoparticles for co-delivery of DOX and MIF could be a promising combined therapy strategy for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Nanopartículas , Ratones , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Ácido Hialurónico/farmacología , Ácido Hialurónico/uso terapéutico , Sulfatos/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Células MCF-7 , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos/métodos , Microambiente Tumoral
17.
J Infect Dis ; 225(10): 1701-1709, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34958382

RESUMEN

BACKGROUND: Control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic needs effective vaccines. METHODS: In a phase 2 randomized, double-blind, placebo-controlled trial, 500 adults aged 18-59 years or ≥60 years were randomized in 2:2:1 ratio to receive 3 doses of 5 µg or 10 µg of a SARS-CoV-2 inactivated vaccine, or placebo separated by 28 days. Adverse events (AEs) were recorded through day 28 after each dosing. Live virus or pseudovirus neutralizing antibodies, and receptor binding domain immunoglobulin G (RBD-IgG) antibody were tested after the second and third doses. RESULTS: Two doses of the vaccine elicited geometric mean titers (GMTs) of 102-119, 170-176, and 1449-1617 for the 3 antibodies in younger adults. Pseudovirus neutralizing and RBD-IgG GMTs were similar between older and younger adults. The third dose slightly (<1.5 fold) increased GMTs. Seroconversion percentages were 94% or more after 2 doses, which were generally similar after 3 doses. The predominant AEs were injection-site pain. All the AEs were grade 1 or 2 in intensity. No serious AE was deemed related to study vaccination. CONCLUSIONS: Two doses of this vaccine induced robust immune response and had good safety profile. A third dose given 28 days after the second dose elicited limited boosting antibody response.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Método Doble Ciego , Humanos , Inmunoglobulina G/sangre , Persona de Mediana Edad , SARS-CoV-2 , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Adulto Joven
18.
J Nanobiotechnology ; 19(1): 421, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906155

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS: In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION: In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.


Asunto(s)
Fibroblastos Asociados al Cáncer/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Irinotecán , Liposomas , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Neoplasias Colorrectales/patología , Femenino , Irinotecán/química , Irinotecán/farmacocinética , Irinotecán/farmacología , Liposomas/química , Liposomas/farmacocinética , Liposomas/farmacología , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacocinética
19.
Exp Ther Med ; 22(4): 1144, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34471430

RESUMEN

Liver cancer is one of the most common malignancies worldwide and poses a serious threat to human health. The most important treatment method, liver cancer chemotherapy, is limited due to its high toxicity and poor specificity. Targeted drug delivery systems have emerged as novel therapeutic strategies that deliver precise, substantial drug doses to target sites via targeting vectors and enhance the therapeutic efficacy. In the present study, glycyrrhetinic acid-modified hyaluronic acid (GA-HA) was used as a carrier for the model drug docetaxel (DTX) to prepare DTX-loaded GA-HA nanoparticles (DTX/GA-HA-NPs). The results indicated that the DTX/GA-HA-NPs exhibited high monodispersity (particle dispersity index, 0.209±0.116) and desirable particle size (208.73±5.0 nm) and zeta potential (-27.83±3.14 mV). The drug loading capacity and encapsulation efficiency of the NPs were 12.59±0.68 and 85.38±4.62%, respectively. Furthermore, it was determined that FITC-GA-HA was taken up by cells and distributed in the cytoplasm. DTX and DTX/GA-HA (just the DTX delivered by the nanoparticle) aggregated and altered the structure of cellular microtubules. Compared with DTX alone, DTX/GA-HA-NPs had a stronger inhibitory effect on HepG2 cell proliferation and promoted apoptosis of HepG2 cells. All experimental results indicated that DTX/GA-HA-NPs were successfully prepared and had liver-targeting and antitumor activities in vitro, which provided a foundation for future in vivo studies of the antitumor effects of DTX/GA-HA-NPs.

20.
Biomaterials ; 276: 121003, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34273686

RESUMEN

Peripheral nerves have emerged as the important components in tumor microenvironment (TME), which could activate hepatic stellate cells (HSCs) by secreting substance P (SP), leading to hepatocellular carcinoma (HCC) invasion and metastasis. Herein, we proposed a novel anti-HCC concept of blocking "SP-HSCs-HCC" axis for omnidirectional inhibition of HCC development. To pursue this aim, the novel CAP/GA-sHA-DOX NPs were developed for targeted co-delivery of capsaicin (CAP) and doxorubicin (DOX) using glycyrrhetinic acid (GA) modified sulfated-HA (sHA) as nanocarriers. Among that, CAP could inhibit the activation of HSCs as an inhibitor of SP. Notably, to real mimic "SP-HSCs-HCC" axis for in vitro and in vivo evaluation, both "SP + LX-2+BEL-7402" co-cultured cell model and "SP + m-HSC + H22" co-implantation mice model were attempted for the first time. Furthermore, in vivo anti-HCC effects were performed in three different tumor-bearing models: subcutaneous implantation of H22 or "SP + m-HSC + H22", intravenous injection of H22 for lung metastasis, and orthotopic implantation of H22 for primary HCC. Our results showed that CAP/GA-sHA-DOX NPs could be efficiently taken up by tumor cells and activated HSCs (aHSCs) simultaneously, and effectively inhibit tumor drug-resistance and migration by blocking SP-induced HSCs activation. In addition, CAP/GA-sHA-DOX NPs exhibited low ECM deposition, less tumor angiogenesis, and superior in vivo anti-HCC effects. The anti-HCC mechanisms revealed that CAP/GA-sHA-DOX NPs could down-regulate the expression level of Vimentin and P-gp, reverse epithelial-mesenchymal transition (EMT) of tumor cells. In brief, the nano-sized combination therapy based on GA-sHA-DOX polymers could effectively inhibit drug-resistance and metastasis of HCC by blocking "SP-HSCs-HCC" axis, which provides a promising approach for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Células Estrelladas Hepáticas , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Sustancia P , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...