Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Entropy (Basel) ; 26(9)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330063

RESUMEN

Multivariate entropy algorithms have proven effective in the complexity dynamic analysis of electroencephalography (EEG) signals, with researchers commonly configuring the variables as multi-channel time series. However, the complex quantification of brain dynamics from a multi-frequency perspective has not been extensively explored, despite existing evidence suggesting interactions among brain rhythms at different frequencies. In this study, we proposed a novel algorithm, termed multi-frequency entropy (mFreEn), enhancing the capabilities of existing multivariate entropy algorithms and facilitating the complexity study of interactions among brain rhythms of different frequency bands. Firstly, utilizing simulated data, we evaluated the mFreEn's sensitivity to various noise signals, frequencies, and amplitudes, investigated the effects of parameters such as the embedding dimension and data length, and analyzed its anti-noise performance. The results indicated that mFreEn demonstrated enhanced sensitivity and reduced parameter dependence compared to traditional multivariate entropy algorithms. Subsequently, the mFreEn algorithm was applied to the analysis of real EEG data. We found that mFreEn exhibited a good diagnostic performance in analyzing resting-state EEG data from various brain disorders. Furthermore, mFreEn showed a good classification performance for EEG activity induced by diverse task stimuli. Consequently, mFreEn provides another important perspective to quantify complex dynamics.

2.
Brain Behav ; 14(8): e3570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39192611

RESUMEN

INTRODUCTION: Subjective cognitive decline (SCD) refers to individuals' perceived decline in memory and/or other cognitive abilities relative to their previous level of performance. Sensory decline is one of the main manifestations of decline in older adults with SCD. The efficient integration of visual and auditory information, known as audiovisual integration, is a crucial perceptual process. This study aims to evaluate audiovisual integration in older adults with SCD. METHODS: We adopted the audiovisual detection task, the Colavita task, and the Sound-Induced Flash Illusion (SIFI) task to evaluate the audiovisual integration by examining both redundant and illusory effects. Older adults diagnosed with SCD (N = 50, mean age = 67.8 years) and a control group of non-SCD older adults (N = 51, mean age = 66.5 years) were recruited. All participants took part in the three aforementioned experiments. RESULTS: The outcomes showed that a redundant effect occurred in both SCD and non-SCD older adults, with SCD older adults gaining more benefits in audiovisual detection task. Moreover, an equivalent amount of the visual dominance effect was observed among both SCD and non-SCD older adults in Colavita task. In addition, older adults with SCD perceived an equal fission illusion but a bigger fusion illusion compared with non-SCD older adults in SIFI task. CONCLUSIONS: Overall, older adults with SCD exhibit increased audiovisual redundant effects and stronger fusion illusion susceptibility compared to non-SCD older adults. Besides, visual dominance was observed in both groups via the Colavita task, with no significant difference between non-SCD and SCD older adults. These findings implied that audiovisual integration might offer a potential way for the identification of SCD.


Asunto(s)
Percepción Auditiva , Disfunción Cognitiva , Ilusiones , Percepción Visual , Humanos , Anciano , Femenino , Masculino , Disfunción Cognitiva/fisiopatología , Percepción Auditiva/fisiología , Ilusiones/fisiología , Percepción Visual/fisiología , Persona de Mediana Edad
3.
J Environ Manage ; 368: 122217, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146645

RESUMEN

The rapid increase in global plastic consumption, especially the worldwide use of polyethylene terephthalate (PET), has caused serious pollution problems. Due to the low recycling rate of PET, a substantial amount of waste accumulates in the environment, which prompts a growing focus on enzymatic degradation for its efficiency and environmentally friendliness. This study systematically designed and modified a cutinase, Est1 from Thermobifida alba AHK119, known for its potential of plastic-degradation at high temperatures. Additionally, the introduction of clustering algorithms provided the ability to understand and modify biomolecules, to accelerate the process of finding the optimal mutations. K-means was further proceeded based on the positive mutations. After comprehensive screening for thermostability and activity mutation sites, the dominant mutation Est1_5M (Est1 with the mutations of N213M, T215P, S115P, Q93A, and L91W) exhibited satisfying degradation ability for commercial PET bottles. The results showed that Est1_5M achieved a degradation rate of 90.84% in 72 h, 65-fold higher than the wild type. This study offers reliable theoretical and practical support for the development of efficient PET-degrading enzymes, providing a reference for plastic pollution management.


Asunto(s)
Hidrolasas de Éster Carboxílico , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Biodegradación Ambiental
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39183363

RESUMEN

Numerous studies on perceptual training exist, however, most have focused on the precision of temporal audiovisual perception, while fewer have concentrated on ability promotion for audiovisual integration (AVI). To investigate these issues, continuous 5-day audiovisual perceptual training was applied, during which electroencephalography was performed in response to auditory-only (A), visual-only (V) and audiovisual (AV) stimuli before and after training. The results showed that the perceptual sensitivity was greater for training group than for control group and was greater in the posttest than in the pretest. The response to the AV stimulus was significantly faster in the posttest than in the pretest for the older training group but was significantly greater for A and V stimuli for the younger training group. Electroencephalography analysis found higher P3 AVI amplitudes [AV-(A + V)] in the posttest than in the pretest for training group, which were subsequently reflected by an increased alpha (8-12 Hz) oscillatory response and strengthened global functional connectivity (weighted phase lag index). Furthermore, these facilitations were greater for older training groups than for younger training groups. These results confirm the age-related compensatory mechanism for AVI may be strengthened as audiovisual perceptual training progresses, providing an effective candidate for cognitive intervention in older adults.


Asunto(s)
Estimulación Acústica , Ritmo alfa , Percepción Auditiva , Estimulación Luminosa , Percepción Visual , Humanos , Masculino , Femenino , Percepción Visual/fisiología , Percepción Auditiva/fisiología , Anciano , Ritmo alfa/fisiología , Estimulación Luminosa/métodos , Electroencefalografía , Persona de Mediana Edad , Envejecimiento/fisiología , Adulto Joven , Encéfalo/fisiología , Adulto
5.
ChemSusChem ; : e202401491, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187439

RESUMEN

The selective C-methylenation of N-unsubstituted indoles using CO2 as the C1 source to access diindolylmethane (DIM) and its derivatives is described. This reaction provides a novel method for four-electron reductive functionalization of CO2 with N-unsubstituted indoles via formation of C-CH2-C bonds, and a new access to molecular structures.

6.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976973

RESUMEN

Joint attention is an indispensable tool for daily communication. Abnormalities in joint attention may be a key reason underlying social impairment in schizophrenia spectrum disorders. In this study, we aimed to explore the attentional orientation mechanism related to schizotypal traits in a social situation. Here, we employed a Posner cueing paradigm with social attentional cues. Subjects needed to detect the location of a target that is cued by gaze and head orientation. The power in the theta frequency band was used to examine the attentional process in the schizophrenia spectrum. There were four main findings. First, a significant association was found between schizotypal traits and attention orientation in response to invalid gaze cues. Second, individuals with schizotypal traits exhibited significant activation of neural oscillations and synchrony in the theta band, which correlated with their schizotypal tendencies. Third, neural oscillations and synchrony demonstrated a synergistic effect during social tasks, particularly when processing gaze cues. Finally, the relationship between schizotypal traits and attention orientation was mediated by neural oscillations and synchrony in the theta frequency band. These findings deepen our understanding of the impact of theta activity in schizotypal traits on joint attention and offer new insights for future intervention strategies.


Asunto(s)
Atención , Señales (Psicología) , Esquizofrenia , Ritmo Teta , Humanos , Masculino , Femenino , Ritmo Teta/fisiología , Atención/fisiología , Adulto Joven , Esquizofrenia/fisiopatología , Adulto , Electroencefalografía , Trastorno de la Personalidad Esquizotípica/fisiopatología , Psicología del Esquizofrénico
7.
Iperception ; 15(4): 20416695241264736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055288

RESUMEN

Predicting the timing of incoming information allows brain to optimize information processing in dynamic environments. However, the effects of temporal predictions on tactile perception are not well established. In this study, two experiments were conducted to determine how temporal predictions interact with conditional probabilities in tactile perceptual processing. In Experiment 1, we explored the range of the interval between preceding ready cues and imperative targets in which temporal prediction effects can be observed. This prediction effect was observed for intervals of 500 and 1,000 ms. In Experiment 2, we investigated the benefits of temporal predictions on tactile perception while manipulating the conditional probability (setting the stimulus onset earlier or later than the predicted moment in short and long intervals). Our results revealed that this effect became stronger as the probability of the stimulus at the predicted time point increased under short-interval conditions. Together, our results show that the difficulty of transferring processing resources increases in temporally dynamic environments, suggesting a greater subjective cost associated with maladaptive responses to temporally uncertain events.

8.
Neurosci Bull ; 40(9): 1261-1273, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38937384

RESUMEN

The activity of occipitotemporal regions involved in linguistic reading processes, such as the ventral occipitotemporal cortex (vOT), is believed to exhibit strong interactions during higher-order language processing, specifically in the connectivity between the occipital gyrus and the temporal gyrus. In this study, we utilized functional magnetic resonance imaging (fMRI) with psychophysiological interaction (PPI) and dynamic causal modeling (DCM) to investigate the functional and effective connectivity in the occipitotemporal network during speed reading. We conducted the experiment with native Japanese speakers who underwent and without speed-reading training and subsequently performed established reading tasks at different speeds (slow, medium, and fast) while undergoing 3-Tesla Siemens fMRI. Our activation analyses revealed significant changes in occipital and temporal regions as reading speed increased, indicating functional connectivity within the occipitotemporal network. DCM results further demonstrated more intricate effective connections and high involvement within the occipitotemporal pathway: (1) reading signals originated from the inferior occipital gyrus (iO), distributed to the vOT and the posterior superior temporal sulcus (pSTS), and then gathered in the anterior superior temporal sulcus (aSTS); (2) reading speed loads had modulation effects on the pathways from the aSTS to vOT and from the iO to vOT. These findings highlight the complex connectivity and dynamic interactions within the occipitotemporal network during speed-reading processes.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Lóbulo Occipital , Lectura , Lóbulo Temporal , Humanos , Masculino , Lóbulo Occipital/fisiología , Lóbulo Occipital/diagnóstico por imagen , Femenino , Adulto Joven , Lóbulo Temporal/fisiología , Lóbulo Temporal/diagnóstico por imagen , Adulto , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen
9.
Neuropsychologia ; 201: 108941, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38908477

RESUMEN

Utilizing the high temporal resolution of event-related potentials (ERPs), we compared the time course of processing incongruent color versus 3D-depth information. Participants were asked to judge whether the food color (color condition) or 3D structure (3D-depth condition) was congruent or incongruent with their previous knowledge and experience. The behavioral results showed that the reaction times in the congruent 3D-depth condition were slower than those in the congruent color condition. The reaction times in the incongruent 3D-depth condition were slower than those in the incongruent color condition. The ERP results showed that incongruent color stimuli induced a larger N270, larger P300, and smaller N400 components in the fronto-central region than the congruent color stimuli. Incongruent 3D-depth stimuli induced a smaller N1 in the occipital region, larger P300 and smaller N400 in the parietal-occipital region than congruent 3D-depth stimuli. The time-frequency analysis found that incongruent color stimuli induced a larger theta band (360-580 ms) activation in the fronto-central region than congruent color stimuli. Incongruent 3D-depth stimuli induced larger alpha and beta bands (240-350 ms) activation in the parietal region than congruent 3D-depth stimuli. Our results suggest that the human brain deals with violating general color or depth knowledge in different time courses. We speculate that the depth perception conflict was dominated by solving the problem with visual processing, whereas the color perception conflict was dominated by solving the problem with semantic violation.


Asunto(s)
Encéfalo , Percepción de Color , Percepción de Profundidad , Electroencefalografía , Potenciales Evocados , Tiempo de Reacción , Humanos , Masculino , Femenino , Percepción de Color/fisiología , Adulto Joven , Tiempo de Reacción/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología , Percepción de Profundidad/fisiología , Adulto , Estimulación Luminosa , Factores de Tiempo , Mapeo Encefálico
10.
Brain Sci ; 14(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790393

RESUMEN

(1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model.

11.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652552

RESUMEN

The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Multilingüismo , Humanos , Masculino , Femenino , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Fonética , Lectura , Lenguaje , Japón
12.
Neural Netw ; 175: 106296, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653077

RESUMEN

Structural magnetic resonance imaging (sMRI) has shown great clinical value and has been widely used in deep learning (DL) based computer-aided brain disease diagnosis. Previous DL-based approaches focused on local shapes and textures in brain sMRI that may be significant only within a particular domain. The learned representations are likely to contain spurious information and have poor generalization ability in other diseases and datasets. To facilitate capturing meaningful and robust features, it is necessary to first comprehensively understand the intrinsic pattern of the brain that is not restricted within a single data/task domain. Considering that the brain is a complex connectome of interlinked neurons, the connectional properties in the brain have strong biological significance, which is shared across multiple domains and covers most pathological information. In this work, we propose a connectional style contextual representation learning model (CS-CRL) to capture the intrinsic pattern of the brain, used for multiple brain disease diagnosis. Specifically, it has a vision transformer (ViT) encoder and leverages mask reconstruction as the proxy task and Gram matrices to guide the representation of connectional information. It facilitates the capture of global context and the aggregation of features with biological plausibility. The results indicate that CS-CRL achieves superior accuracy in multiple brain disease diagnosis tasks across six datasets and three diseases and outperforms state-of-the-art models. Furthermore, we demonstrate that CS-CRL captures more brain-network-like properties, and better aggregates features, is easier to optimize, and is more robust to noise, which explains its superiority in theory.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encefalopatías/diagnóstico , Encefalopatías/fisiopatología , Redes Neurales de la Computación , Diagnóstico por Computador/métodos
13.
Schizophr Res ; 267: 422-431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640853

RESUMEN

A recently proposed "Hyperfocusing hypothesis" suggests that schizotypy is associated with a more narrow but more intense way of allocating attention. The current study aims to test a vital prediction of this hypothesis in a social context, that schizotypy may be related to greater difficulty overcoming the distracting effects of gaze. This could cause a longer time to respond to targets that are invalidly cued by gaze. The current study tested this prediction in a modified Posner cueing paradigm by using P3 as an indicator for attentional resources. Seventy-four young healthy individuals with different levels of schizotypy were included, they were asked to detect the location of a target that was cued validly or invalidly by the gaze and head orientation. The results revealed that (a) schizotypy is associated with hyperfocusing on gaze direction, leading to greater difficulty overcoming the distracting effect of gaze. The higher the trait-schizotypy score, the more time needed to respond to targets that were invalidly cued by gaze (b) schizotypy is associated with reduced P3 which is directed by social communicative stimuli. The higher the trait-schizotypy score, the smaller the amplitude of P3 (c) the relationship between schizotypal traits and response times of the gaze-invalid condition is fully intermediated by P3. The findings of the current study suggest the P3 component may be a crucial neural mechanism underlying joint attention deficits in schizophrenia.


Asunto(s)
Atención , Señales (Psicología) , Fijación Ocular , Trastorno de la Personalidad Esquizotípica , Humanos , Masculino , Femenino , Adulto Joven , Trastorno de la Personalidad Esquizotípica/fisiopatología , Atención/fisiología , Fijación Ocular/fisiología , Electroencefalografía , Adulto , Potenciales Relacionados con Evento P300/fisiología , Adolescente , Tiempo de Reacción/fisiología , Estimulación Luminosa
14.
Hum Brain Mapp ; 45(4): e26647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488448

RESUMEN

Parkinson's disease (PD) patients exhibit deficits in primary sensorimotor and higher-order executive functions. The gradient reflects the functional spectrum in sensorimotor-associated areas of the brain. We aimed to determine whether the gradient is disrupted in PD patients and how this disruption is associated with treatment outcome. Seventy-six patients (mean age, 59.2 ± 12.4 years [standard deviation], 44 women) and 34 controls participants (mean age, 58.1 ± 10.0 years [standard deviation], 19 women) were evaluated. We explored functional and structural gradients in PD patients and control participants. Patients were followed during 2 weeks of multidisciplinary intensive rehabilitation therapy (MIRT). The Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) was administered to patients before and after treatment. We investigated PD-related alterations in the principal functional and structural gradients. We further used a support vector machine (SVM) and correlation analysis to assess the classification ability and treatment outcomes related to PD gradient alterations, respectively. The gradients showed significant differences between patients and control participants, mainly in somatosensory and visual networks involved in primary function, and higher-level association networks (dorsal attentional network (DAN) and default mode network (DMN)) related to motor control and execution. On the basis of the combined functional and structural gradient features of these networks, the SVM achieved an accuracy of 91.2% in discriminating patients from control participants. Treatment reduced the gradient difference. The altered gradient exhibited a significant correlation with motor improvement and was mainly distributed across the visual network, DAN and DMN. This study revealed damage to gradients in the brain characterized by sensorimotor and executive control deficits in PD patients. The application of gradient features to neurological disorders could lead to the development of potential diagnostic and treatment markers for PD.


Asunto(s)
Enfermedad de Parkinson , Corteza Sensoriomotora , Humanos , Femenino , Persona de Mediana Edad , Anciano , Imagen por Resonancia Magnética , Función Ejecutiva , Mapeo Encefálico
15.
Exp Brain Res ; 242(4): 809-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400993

RESUMEN

It is well known that information on stimulus orientation plays an important role in sensory processing. However, the neural mechanisms underlying somatosensory orientation perception are poorly understood. Adaptation has been widely used as a tool for examining sensitivity to specific features of sensory stimuli. Using the adaptation paradigm, we measured event-related potentials (ERPs) in response to tactile orientation stimuli presented pseudo-randomly to the right-hand palm in trials with all the same or different orientations. Twenty participants were asked to count the tactile orientation stimuli. The results showed that the adaptation-related N60 component was observed around contralateral central-parietal areas, possibly indicating orientation processing in the somatosensory regions. Conversely, the adaptation-related N120 component was identified bilaterally across hemispheres, suggesting the involvement of the frontoparietal circuitry in further tactile orientation processing. P300 component was found across the whole brain in all conditions and was associated with task demands, such as attention and stimulus counting. These findings help provide an understanding of the mechanisms of tactile orientation processing in the human brain.


Asunto(s)
Electroencefalografía , Percepción del Tacto , Humanos , Potenciales Evocados/fisiología , Tacto/fisiología , Encéfalo/fisiología , Atención/fisiología , Percepción del Tacto/fisiología
16.
Psychiatry Res ; 328: 115464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690192

RESUMEN

Patients diagnosed with schizophrenia (SZ) exhibit compromised functional connectivity within extensive brain networks. However, the precise development of this impairment during disease progression in the clinical high-risk (CHR) population and their relatives remains unclear. Our study leveraged data from 128 resting electroencephalography (EEG) channels acquired from 30 SZ patients, 21 CHR individuals, 17 unaffected healthy relatives (RSs; those at heightened SZ risk due to family history), and 31 healthy controls (HCs). These data were harnessed to establish functional connectivity patterns. By calculating the geometric distance between EEG sequences, we unveiled local and global nonlinear relationships within the entire brain. The process of dimensionality reduction led to low-dimensional representations, providing insights into high-dimensional EEG data. Our findings indicated that CHR participants exhibited aberrant functional connectivity across hemispheres, whereas RS individuals showcased anomalies primarily concentrated within hemispheres. In the realm of low-dimensional analysis, RS participants' third-dimensional occipital lobe values lay between those of the CHR individuals and HCs, significantly correlating with scale scores. This low-dimensional approach facilitated the visualization of brain states, potentially offering enhanced comprehension of brain structure, function, and early-stage functional impairment, such as occipital visual deficits, in RS individuals before cognitive decline onset.

17.
PNAS Nexus ; 2(9): pgad276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693210

RESUMEN

The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.

18.
Cereb Cortex ; 33(19): 10258-10271, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37557911

RESUMEN

Performing working memory tasks correctly requires not only the temporary maintenance of information but also the visual-to-motor transformation of information. Although sustained delay-period activity is known to be a mechanism for temporarily maintaining information, the mechanism for information transformation is not well known. An analysis using a population of delay-period activities recorded from prefrontal neurons visualized a gradual change of maintained information from sensory to motor as the delay period progressed. However, the contributions of individual prefrontal neurons to this process are not known. In the present study, we used a version of the delayed-response task, in which monkeys needed to make a saccade 90o clockwise from a visual cue after a 3-s delay, and examined the temporal change in the preferred directions of delay-period activity during the delay period for individual neurons. One group of prefrontal neurons encoded the cue direction by a retinotopic reference frame and either maintained it throughout the delay period or rotated it 90o counterclockwise to adjust visual information to saccade information, whereas other groups of neurons encoded the cue direction by a saccade-based reference frame and rotated it 90o clockwise. The results indicate that visual-to-motor information transformation is achieved by manipulating the reference frame to adjust visual coordinates to motor coordinates.


Asunto(s)
Memoria a Corto Plazo , Desempeño Psicomotor , Memoria a Corto Plazo/fisiología , Desempeño Psicomotor/fisiología , Corteza Prefrontal/fisiología , Neuronas/fisiología , Movimientos Sacádicos , Tiempo de Reacción/fisiología
19.
Brain Sci ; 13(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37508924

RESUMEN

(1) Background: This study investigates whether audiovisual n-back training leads to training effects on working memory and transfer effects on perceptual processing. (2) Methods: Before and after training, the participants were tested using the audiovisual n-back task (1-, 2-, or 3-back), to detect training effects, and the audiovisual discrimination task, to detect transfer effects. (3) Results: For the training effect, the behavioral results show that training leads to greater accuracy and faster response times. Stronger training gains in accuracy and response time using 3- and 2-back tasks, compared to 1-back, were observed in the training group. Event-related potentials (ERPs) data revealed an enhancement of P300 in the frontal and central regions across all working memory levels after training. Training also led to the enhancement of N200 in the central region in the 3-back condition. For the transfer effect, greater audiovisual integration in the frontal and central regions during the post-test rather than pre-test was observed at an early stage (80-120 ms) in the training group. (4) Conclusion: Our findings provide evidence that audiovisual n-back training enhances neural processes underlying a working memory and demonstrate a positive influence of higher cognitive functions on lower cognitive functions.

20.
Commun Biol ; 6(1): 491, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147471

RESUMEN

In neuroimaging research, univariate analysis has always been used to localize "representations" at the microscale, whereas network approaches have been applied to characterize transregional "operations". How are representations and operations linked through dynamic interactions? We developed the variational relevance evaluation (VRE) method to analyze individual task fMRI data, which selects informative voxels during model training to localize the "representation", and quantifies the dynamic contributions of single voxels across the whole-brain to different cognitive functions to characterize the "operation". Using 15 individual fMRI data files for higher visual area localizers, we evaluated the characterization of selected voxel positions of VRE and revealed different object-selective regions functioning in similar dynamics. Using another 15 individual fMRI data files for memory retrieval after offline learning, we found similar task-related regions working in different neural dynamics for tasks with diverse familiarities. VRE demonstrates a promising horizon in individual fMRI research.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Memoria , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...