RESUMEN
BACKGROUND: Echinochloa crus-galli is the most troublesome and widespread weed of most rice-growing regions of the world. Cyhalofop-butyl, a herbicide within the acetyl-CoA carboxylase (ACCase) chemical group, has been extensively used to control barnyardgrass in rice. The repeated exposure to cyhalofop-butyl has led to resistance evolution in E. crus-galli populations. RESULTS: In this study, we identified a population of E. crus-galli (R-HN) in a rice field in Hunan, China, that developed resistance to cyhalofop-butyl at 4.49-fold the recommended field dose. No known target mutation was detected in the ACCase gene of the R-HN population by ACCase sequencing compared to sensitive populations. Both cytochrome P450 (CYP450) and glutathione S-transferase (GST) inhibitors could not significantly reverse the resistance to cyhalofop-butyl. The nontarget-site resistance (NTSR) mechanism was investigated by transcriptome sequencing. Validation of the screened candidate genes by quantitative real-time (qRT)-PCR revealed that six glycosyltransferases (GTs) and four ATP-binding cassette (ABC) transporter genes were consistently upregulated in the R-HN population. Five GTs and one ABC transporter genes were constitutively upregulated after cyhalofop-butyl treatment in the R-HN population. Molecular docking results showed that the significant binding energy of GT79, GT75L6 and GT74E among all candidate genes. CONCLUSION: Thus, the GT genes appear to be directly implicated in NTSR to cyhalofop-butyl in the R-HN populations through metabolic enhancement, but their functional characterization needs to be studied. © 2024 Society of Chemical Industry.
RESUMEN
Introduction: Bromus japonicus is one of the most notorious agricultural weeds in China. The long-term use of ALS-inhibiting herbicides has led to rapid evolution of herbicide resistance in B. japonicus. B. japonicus population (BJ-R) surviving mesosulfuron-methyl treatment was collected from wheatland. Here, we aimed to confirm the resistance mechanisms in this putative resistant population. Methods: The dose-reponse tests were used to test the resistance level of the B. japonicus to ALS-inhibiting herbicides. Pretreatment with P450 and GST inhibitors and GST activity assays were used to determine whether P450 or GST was involved in the resistance of the BJ-R population. Sanger sequencing was used to analyse the ALS mutation of the BJ-R population. RT-qPCR was used to confirm the the expression levels of the ALS gene in mesosulfuron-methyl -resistant (BJ-R) and-susceptible (BJ-S) B. japonicus. An in vitro ALS activity assay was used to determine the ALS activity of the BJ-R and BJ-S populations. Homology modelling and docking were used to determine the binding energy of the BJ-R and BJ-S populations with ALS-inhibiting herbicides. Results: B. japonicus population (BJ-R) was confirmed to be 454- and 2.7-fold resistant to the SU herbicides mesosulfuron-methyl and nicosulfuron, and 7.3-, 2.3-, 1.1- and 10.8-fold resistant to the IMI herbicide imazamox, the TP herbicide penoxsulam, the PTB herbicide pyribenzoxim and the SCT herbicide flucarbazone-sodium, respectively, compared with its susceptible counterpart (BJ-S). Neither a P450 inhibitor nor a GST inhibitor could reverse the level of resistance to mesosulfuron-methyl in BJ-R. In addition, no significant differences in GST activity were found between the BJ-R and BJ-S. ALS gene sequencing revealed a Pro-197-Thr mutation in BJ-R, and the gene expression had no significant differences between the BJ-R and BJ-S. The ALS activity of BJ-R was 106-fold more tolerant to mesosulfuron-methyl than that of BJ-S. Molecular docking showed that the binding energy of the ALS active site and mesosulfuron-methyl was changed from -6.67 to -4.57 kcal mol-1 due to the mutation at position 197. Discussion: These results suggested that the Pro-197-Thr mutation was the main reason for the high resistance level of BJ-R to mesosulfuron-methyl. Unlike previous reports of the cross-resistance pattern conferred by this mutation, we firstly documented that the Pro-197-Thr mutation confers broad cross-resistance spectrums to ALS-inhibiting herbicides in B. japonicus.
RESUMEN
We report here an expanded porphyrinoid, cyclo[2]pyridine[8]pyrrole, 1, that can exist at three closed-shell oxidation levels. Macrocycle 1 was synthesized via the oxidative coupling of two open chain precursors and fully characterized by means of NMR and UV-vis spectroscopies, MS, and X-ray crystallography. Reduction of the fully oxidized form (1, blue) with NaBH4 produced either the half-oxidized (2, teal) or fully reduced forms (3, pale yellow), depending on the amount of reducing agent used and the presence or absence of air. Reduced products 2 or 3 can be oxidized to 1 by various oxidants (quinones, FeCl3, and AgPF6). Macrocycle 1 also undergoes proton-coupled reductions with I-, Br-, Cl-, SO32-, or S2O32- in the presence of an acid. Certain thiol-containing compounds likewise reduce 1 to 2 or 3. This conversion is accompanied by a readily discernible color change, making cyclo[2]pyridine[8]pyrrole 1 able to differentiate biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH).
RESUMEN
Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.
Asunto(s)
Herbicidas , Herbicidas/farmacología , Ecosistema , Malezas/genética , Poaceae/genética , Poliploidía , Genómica , Resistencia a los Herbicidas/genéticaRESUMEN
BACKGROUND: Haloxyfop-P-methyl, an acetyl-CoA carboxylase (ACCase)-inhibiting herbicide, has been extensively used to control grass weeds. Widespread use of haloxyfop-P-methyl in cotton fields in China has led to the development of glutathione transferase (GST)-mediated resistance in Digitaria sanguinalis. An RNA-seq analysis identified DsGSTU1, a tau class glutathione transferase from the D. sanguinalis transcriptome as a potential candidate. Here, we cloned DsGSTU1 from D. sanguinalis young leaf tissues and subsequently characterized DsGSTU1 by a combination of sequence analysis, as well as functional heterologous expression in rice. RESULTS: The full-length coding DNA sequence (CDS) of DsGSTU1 is 717 bp in length. Higher DsGSTU1 expression was observed in haloxyfop-P-methyl-resistant (HR) D. sanguinalis than in haloxyfop-P-methyl-susceptible (HS) plants. Overexpression of the DsGSTU1 gene was confirmed by transformation into the wild-type (WT) Nipponbare rice with pBWA(V)HS, a recombinant expression vector. GST activity in transgenic rice seedlings was 1.18-1.40-fold higher than the WT rice seedlings before and after haloxyfop-P-methyl treatment, respectively. Additionally, transgenic rice seedlings overexpressing DsGSTU1 were less sensitive to haloxyfop-P-methyl. CONCLUSION: Our combined findings suggest that DsGSTU1 is involved in metabolic resistance to haloxyfop-P-methyl in D. sanguinalis. A better understanding of the major genes contributing to herbicide-resistant D. sanguinalis facilitates the development of resistance management strategies for this global invasive grass weed. © 2023 Society of Chemical Industry.
Asunto(s)
Herbicidas , Oryza , Digitaria/genética , Glutatión Transferasa/genética , Resistencia a los Herbicidas/genética , Poaceae/genética , Oryza/genética , Herbicidas/farmacología , Clonación Molecular , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismoRESUMEN
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Asunto(s)
Diabetes Gestacional , Células Supresoras de Origen Mieloide , Neoplasias , Embarazo , Femenino , Humanos , Diabetes Gestacional/metabolismo , Homeostasis , Microambiente TumoralRESUMEN
Plants have evolved circadian clock systems that enable biological processes to occur in tandem with periodic changes in the environment. However, it is largely unknown whether crosstalk occurs between the circadian clock and the response to herbicide in rice. We identified 19 conserved rhythmic metabolites which were response to pesticide application and their metabolic abundance peaked mainly at ZT2 or ZT14-ZT18. We found a series of glyphosate, s-Metolachlor, fenclorim, metcamifen and GA3 response genes were expressed following stable circadian rhythms. In order to determine the patterns of their temporal expression, co-expression network analysis was done on 10,467 genes that were periodically expressed throughout a 24-hour period. Next, we identified 4,031 potential direct target genes of OsCCA1 in using DAP-seq data for OsCCA1. Of these, 339, 22, 53, 53 and 63 genes showed a response to glyphosate, s-Metolachlor, fenclorim, metcamifen and GA3 application, respectively. And they were mainly phased from dusk to midnight. Interestingly, we identified significant OsCCA1 binding peaks in the promoter regions of four herbicide resistance genes, including OsCYP81A12, OsCYP81E22, OsCYP76C2, and OsCYP76C4. Finally, we found that herbicide application could affects the expression of some of the central oscillator genes of the rice circadian clock. Here, we used multi-omics data to reveal the crosstalk between the circadian clock and herbicide response processes at the epigenomics, transcriptome, and metabolome levels in rice. This work will serve as a theoretical guide for identifying rhythmic herbicide targets, leading to the creation of new herbicides or the breeding of crops resistant to herbicides.
RESUMEN
Barnyardgrass (Echinochloa crus-galli L.) is the most serious weed threatening rice production, and its effects are aggravated by resistance to the quinclorac herbicide in the Chinese rice fields. This study conducted a comparative proteomic characterization of the quinclorac-treated and non-treated resistant and susceptible E. crus-galli using isobaric tags for relative and absolute quantification (iTRAQ). The results indicated that the quinclorac-resistant E. crus-galli had weaker photosynthesis and a weaker capacity to mitigate abiotic stress, which suggested its lower environmental adaptability. Quinclorac treatment significantly increased the number and expression of the photosynthesis-related proteins in the resistant E. crus-galli and elevated its photosynthetic parameters, indicating a higher photosynthetic rate compared to those of the susceptible E. crus-galli. The improved adaptability of the resistant E. crus-galli to quinclorac stress could be attributed to the observed up-regulated expression of eight herbicide resistance-related proteins and the down-regulation of two proteins associated with abscisic acid biosynthesis. In addition, high photosynthetic parameters and low glutathione thiotransferase (GST) activity were observed in the quinclorac-resistant E. crus-galli compared with the susceptible biotype, which was consistent with the proteomic sequencing results. Overall, this study demonstrated that the resistant E. crus-galli enhanced its adaptability to quinclorac by improving the photosynthetic efficiency and GST activity.
RESUMEN
A quinoxaline-fused octaphyrin(2.0.0.0.2.0.0.0) was synthesized by the FeCl3-induced oxidative coupling of an α-free quinoxaline-fused tetrapyrrole. This macrocycle adopts a figure-of-eight conformation in the solid state and acts as a rudimentary chemosensor in solution. The Lewis basic anions fluoride and hydroxide induce a colour change via a deprotonation mechanism.
RESUMEN
Urinary tract infections (UTI) are commonest infections, especially in catheterized patients. It is responsible of mortality and morbidity among hospitalized patients. The objectives of the study were to demonstrate the virulence factors and their genes of multi-drug resistance Pseudomonas aeruginosa causing UTI. A total of 366 non-catheterized and 171 catheterized patients' (in whom the catheter was in > 48 hours duration) urine samples (one sample/patient) from both sexes were collected and processed. >105 colony forming unit was considered as Pseudomonas aeruginosa culture-positive. Antimicrobial susceptibility testing was done by the Kirby Bauer disc diffusion method (The Clinical and laboratory standards institute guidelines 2019). The virulence factors were detected by in vitro assay method and polymerase chain reaction was done to detect the resistance genes present in Pseudomonas aeruginosa. Biofilm production was detected by the microtiter plate method. Out of 537 urine samples a total of 280 (52%) were females and 257 (48%) were male patients. Out of 366 non-catheterized urine samples 42 (23.6%) grew Pseudomonas aeruginosa and out of 171 catheterized urine 23 (25.84%) grew Pseudomonas aeruginosa. All were multi-drug resistance strains. A total of 10 (23.80%), 42 (100%), 8 (19.05%), 24 (57.14%), and 36 (85.71%) produced the Metallo-ß-lactamases, AmpC-ß-lactamase, carbapenemase, strong biofilm, and twitching motility positive, respectively in non-catheterized urine samples. A total of 11, 34, 9, 28, and 37 were oxacillinases-23, multidrug efflux protein resistance, New Delhi metallo-ß-lactamase-1, Verona Integron-encoded MBL, and Pseudomonas specific enzyme gene detected in non-catheterized urine samples. A total of 8 (34.8%), 6 (26.01%), 4 (17.39%), 15 (65.2%), and 18 (78.26%) were produced Metallo-ß-lactamases, carbapenemase, AmpC-ß-lactamase, strong biofilm, and twitching motility positive, respectively in catheterized urine samples. A total of 6, 18, 4, 16, and 15 were oxacillinases 23, multidrug efflux protein resistance, New Delhi metallo-ß-lactamase-1, Verona Integron-encoded MBL, and Pseudomonas specific enzyme, respectively genes detected in catheterized urine samples. Biofilm formation and twitching motility showed correlation among culture-positive Pseudomonas aeruginosa strains from catheterized patients (Correlation coefficients = 6.2, 95% confidence interval: 5.4-7.2). A better hospital infection control practice and detailed investigation of the microevolution of Pseudomonas aeruginosa in UTI are needed.
Asunto(s)
Pseudomonas aeruginosa , Infecciones Urinarias , Femenino , Humanos , Masculino , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Infecciones Urinarias/tratamiento farmacológico , Factores de Virulencia , Resistencia a Múltiples Medicamentos , ChinaRESUMEN
Botanical compounds with herbicidal activity exhibit safety, low toxicity, and low chances of herbicide resistance development in plants. They have widespread applications in green agricultural production and the development of organic agriculture. In the present study, dihydrocoumarin showed potential as a botanical herbicide, and its phenotypic characteristics and mechanism of action were studied in barnyardgrass [Echinochloa crus-galli (L.) P.Beauv.] seedlings. The results indicated that dihydrocoumarin inhibited the growth of barnyardgrass without causing significant inhibition of rice seedling growth at concentrations ranging between 0.5 and 1.0 g/L. Additionally, dihydrocoumarin treatment could cause oxidative stress in barnyardgrass, disrupt the cell membrane, and reduce the root cell activity, resulting in root cell death. Transcriptomic analyses revealed that dihydrocoumarin could inhibit barnyardgrass normal growth by affecting the signal transduction of plant hormones. The results showed significant differential expression of plant hormone signal transduction genes in barnyardgrass. Additionally, dihydrocoumarin interfered with the expression of numerous phenylpropanoid biosynthesis genes in barnyardgrass that affect the production of various vital metabolites. We speculate that the barnyardgrass growth was suppressed by the interaction among hormones and phenylpropanoid biosynthesis genes, indicating that dihydrocoumarin can be applied as a bioherbicide to control barnyardgrass growth in rice transplanting fields.
RESUMEN
It is necessary to study the combined toxicity of an herbicide and its safener because the two are often used in combination. S-metolachlor and its safener benoxacor have been detected in aquatic environments and can individually damage the oxidative stress system in zebrafish embryos (Danio rerio). However, only their separate toxicity in zebrafish (Danio rerio) embryo development has been reported. This study assessed the combined toxicity of benoxacor and S-metolachlor in zebrafish embryo development, including acute toxicity, developmental toxicity, oxidative damage, and cell apoptosis. The 96-h LC50 values were higher in mixtures of benoxacor and S-metolachlor than in benoxacor alone. The treatments included S-metolachlor, Mix-1 (0.1 mg/L benoxacor + 0.1 mg/L S-metolachlor), Mix-2 (0.1 mg/L benoxacor + 0.3 mg/L S-metolachlor) and benoxacor alone. Embryos exposed to Mix-1 and Mix-2 had lower developmental toxicities, superoxide dismutase (SOD) activity, osx and cat expression levels than those exposed to benoxacor alone. Moreover, glutathione S-transferase (GST), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) activities, and the expressions of tbx16, nrf2, bcl2, and caspase9 were higher in the mixtures than in the benoxacor group. High-throughput RNA sequencing revealed that benoxacor had a greater effect on gene regulation than Mix-1 and Mix-2. The malformation rate, different enrichment gene numbers, and gene expression levels of hatched embryos were higher in Mix-1 than in Mix-2. The results indicate that a mixture of S-metolachlor and benoxacor has antagonistic effects in the early stage of embryo development. The mixtures can break the reactive oxygen species balance, causing abnormal cell apoptosis and developmental malformation in embryos. Besides investigating the combined toxicity of benoxacor and S-metolachlor in zebrafish embryo development, this study provides a risk assessment basis for a herbicide combined with its safener.
Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Acetamidas , Animales , Antioxidantes/metabolismo , Embrión no Mamífero , Desarrollo Embrionario , Herbicidas/metabolismo , Oxazinas , Estrés Oxidativo , Proteínas de Dominio T Box/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Chinese sprangletop (Leptochloa chinensis), belonging to the grass subfamily Chloridoideae, is one of the most notorious weeds in rice ecosystems. Here, we report a chromosome-scale reference genome assembly and a genomic variation map of the tetraploid L. chinensis. The L. chinensis genome is derived from two diploid progenitors that diverged â¼10.9 million years ago, and its two subgenomes display neither fractionation bias nor overall gene expression dominance. Comparative genomic analyses reveal substantial genome rearrangements in L. chinensis after its divergence from the common ancestor of Chloridoideae and, together with transcriptome profiling, demonstrate the important contribution of tetraploidization to the gene sources for the herbicide resistance of L. chinensis. Population genomic analyses of 89 accessions from China reveal that L. chinensis accessions collected from southern/southwestern provinces have substantially higher nucleotide diversity than those from the middle and lower reaches of the Yangtze River, suggesting that L. chinensis spread in China from the southern/southwestern provinces to the middle and lower reaches of the Yangtze River. During this spread, L. chinensis developed significantly increased herbicide resistance, accompanied by the selection of numerous genes involved in herbicide resistance. Taken together, our study generated valuable genomic resources for future fundamental research and agricultural management of L. chinensis, and provides significant new insights into the herbicide resistance as well as the origin and adaptive evolution of L. chinensis.
Asunto(s)
Herbicidas , Oryza , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Ecosistema , Genómica , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Oryza/genética , Oryza/metabolismo , Malezas/genética , Poaceae/genética , Poaceae/metabolismo , TetraploidíaRESUMEN
OBJECTIVES: To compare the levels of serum pepsinogen (PG) in patients with gastric cancer (GC), patients with atrophic gastritis (AG), and healthy donors. Also, we explored the clinical value of PG detection for the diagnosis and treatment of GC. METHODS: The PG level in peripheral blood from patients and heathy donors was determined using an Abbott automatic chemiluminescence instrument. The study included 117 patients with GC confirmed by gastroscopy and histopathology, of whom 13 patients had cancer at stage I, 47 at stage II, 41 at stage III, and 16 at stage IV. The AG group included 122 patients, and the control group had 120 healthy donors. The relationship between serum PG levels and the occurrence and development of GC, as well as the evaluation of the clinical value of diagnostic tests based on serum PG detection, were investigated by receiver operating characteristic (ROC) curve analyses. RESULTS: Pepsinogen I (PGI) levels gradually decreased from the control group, the AG group, and the GC group. PGI exhibited high diagnostic value for GC (area under the curve [AUC], 0.834; cutoff, 51.2 ng/mL, sensitivity, 81.7%; specificity, 68.4%), PGII (AUC, 0.587; cutoff value, 13.05 ng/mL; sensitivity, 65.8%; specificity, 53.8%), and PGR (AUC, 0.752; cutoff, 5.65; sensitivity, 54.2%; specificity, 87.2%). The occurrence of GC was negatively correlated with serum levels of PGI (Bâ =â -0.054; ORâ =â 0.947; 95% confidence interval [CI], 0.925-0.970; Pâ <.001) and PGR (Bâ =â -0.420; ORâ =â 0.657; 95% CI, 0.499-0.864; Pâ =â .003). CONCLUSIONS: The combined detection of PGI, PGII, and PGR has important clinical value for the screening, prevention, and diagnosis of GC and could allow for earlier detection, diagnosis, and treatment of GC.
Asunto(s)
Neoplasias Gástricas , Detección Precoz del Cáncer , Gastritis Atrófica , Humanos , Tamizaje Masivo , Pepsinógeno A , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/prevención & controlRESUMEN
To enhance quinclorac potency, twenty-five derivatives were synthesized containing 3-methyl-1H-pyrazol-5-yl by intermediate derivatization methods (IDMs). These compounds were confirmed by melting point (mp), 1HNMR, 13CNMR, and HRMS. The compound 1,3-dimethyl-1H-pyrazol-5-yl 3,7-dichloroquinoline-8-carboxylate (10a) was determined by X-ray diffraction. The activity of these compounds substituent on the phenyl was: electron-drawing group > neutral group > donor-drawing group, the results was like that of substituted benzyl group on pyrazole. The herbicidal activity assays showed that compounds 1-(2-fluorophenyl)-3-methyl-1H-pyrazol-5-yl 3,7-dichloroquinoline-8-carboxylate (8l, EC50 = 10.53 g/ha) and 10a (EC50 = 10.37 g/ha) had an excellent inhibition effect on barnyard grass in greenhouse experiment. Greenhouse safety experiment of rice exhibited almost no difference in plant height and fresh weight treated 10a at stage 1â¼2-leaf of rice after 14 days but 8l had a detrimental effect. Two season field assays showed 10a herbicidal activity on barnyard grass at 150 g/ha as equal as 300 g/ha quinclorac in fields in 2019 and 2020. The study demonstrated that 10a could be further researched as a potential herbicide to control barnyard grass in fields.
RESUMEN
PURPOSE: Antigens expressed by Toxoplasma gondii (T. gondii) during its life cycle trigger various immune responses in the host. Recently, toxoplasma vaccine research focused on T. gondii surface antigen 1 (SAG1) and Rhoptry Protein 18 (ROP18) to establish a safe and efficacious DNA vaccine. METHOD: We constructed two eukaryotic expression plasmids: p3 × FLAG-Myc-CMV™-24-SAG1 and p3 × FLAG-Myc-CMV™-24-ROP18. BALB/c mice were randomly divided into six groups and immunized with these DNA vaccines either separately or in combination. The combination vaccine was administered at either the full dose or at half-strength dose. Control mice were immunized with empty vector or with phosphate-buffered saline. RESULTS: The frequency of CD4+ cells in the spleen was consistent among all groups, whereas that of CD8+ T cells was the highest in the group immunized with the combination vaccine at half-strength dose (p < 0.05). Importantly, the mRNA expression levels of interleukin-12 (IL-12) and interferon-gamma (INF-γ) were closely correlated (r = 0.6, p < 0.0001) and both were upregulated in the group that was immunized with the combination vaccine at half-strength dose (p < 0.0001). The survival time of the mice subjected to a lethal dose of toxoplasma was significantly extended by prior immunization with DNA vaccines expressing either SAG1 or ROP18 or a combination of both (p < 0.05). The group that was immunized with the combination vaccine at half-strength dose demonstrated the best efficacy (p < 0.05). CONCLUSION: These results showed that the combination DNA vaccine provided better immune protection than the single gene vaccines, and that optimizing the dosing of the vaccine can improve the immune response.
Asunto(s)
Vacunas Antiprotozoos , Toxoplasma , Toxoplasmosis Animal , Vacunas de ADN , Animales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Linfocitos T CD8-positivos , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Toxoplasma/genética , Toxoplasmosis Animal/prevención & control , Vacunas Combinadas , Vacunas de ADN/genéticaRESUMEN
A doubly N-confused phlorin and phlorinone analogue were synthesized from a ß,ß'-linked dipyrromethane precursor and characterized by means of NMR and UV-Vis spectroscopies, X-ray crystallography, and electrochemistry. Solvents have a considerable impact on the optical absorption of the doubly N-confused phlorin so that it can differentiate simple alcohols such as methanol and ethanol.
RESUMEN
BACKGROUND: Asia minor bluegrass (Polypogon fugax) is one of the main weeds invading Chinese canola fields. The P. fugax resistant population SC-R, which survived quizalofop-p-ethyl at the field-recommended rate (67.5 g ha-1 ), was collected from a canola field in Qingsheng County in China. The present study aimed to (1) characterize the SC-R resistance pattern to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides, and (2) investigate the mechanism of quizalofop-p-ethyl resistance in this population. RESULTS: Dose-response studies showed that resistance to quizalofop-p-ethyl and haloxyfop occurred in the SC-R population. Four transcripts/genes encoding the plastidic ACCase carboxyl-transferase domain were isolated from the P. fugax plants. No mutations in the four ACCase genes were detected in the SC-R population compared to the SC-S population. Pre-treatment with the known glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBDCl), reversed resistance to quizalofop-p-ethyl and partially reversed resistance to haloxyfop-R-methyl in the resistant population (SC-R). However, the cytochrome P450 inhibitor malathion did not reverse the resistance. There was no difference in basal GST activity (using CDNB as a substrate), but there was higher inducible GST activity in SC-R relative to SC-S. Two GST genes, GST2c and GSTL3, were constitutively overexpressed in the resistant SC-R population. CONCLUSION: This study confirmed that resistance to quizalofop-p-ethyl in the resistant P. fugax population is likely nontarget-site based involving GST, and this resistance mechanism also partially confers haloxyfop-R-methyl resistance. © 2020 Society of Chemical Industry.
Asunto(s)
Resistencia a los Herbicidas , Acetil-CoA Carboxilasa/genética , China , Glutatión Transferasa/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Proteínas de Plantas/genética , Propionatos , QuinoxalinasRESUMEN
Seed coat and seed reserve show substantial mass variation, play different roles in plant life strategies and are shaped by different selective forces. However, remarkably little is known about the macroevolution of the relative allocation in seed components and its influence on important ecophysiological processes. Using phylogenetic comparative methods and evolutionary modelling approaches, we modelled mass changes in seed components along individual lineages for 940 species and compared the patterns across seed desiccation responses. Seed component allocation was driven primarily by changes in reserve mass rather than coat mass, as evolutionary rates in reserve mass significantly outpaced those in coat mass. Although the scaling patterns between reserve mass and coat mass were similar across desiccation responses, desiccation-sensitive seeds allocated more and evolved faster in reserve compared to desiccation-tolerant seeds. The findings emphasize the relative importance of reserve to coat in the evolution of plant reproductive strategies, revealing potential ecological advantages gained by enlarged reserve. As the first quantification of the evolutionary tempo and mode of seed component mass, our study allows a detailed interpretation of evolutionary pathways underlying seed storage behaviours and advances the understanding of the evolution of desiccation sensitivity in seeds.
Asunto(s)
Desecación , Semillas , FilogeniaRESUMEN
Echinochloa crusgalli (L.) Beauv. (barnyard grass) is considered a noxious weed worldwide, and is the most pernicious weed decreasing rice yields in China. Recently, E. crusgalli has evolved quinclorac resistance, making it among the most serious herbicide resistant weeds in China. The present study explored differences in germination and growth between quinclorac-resistant and -susceptible E. crusgalli collected in Hunan Province. The order of the seven E. crusgalli biotypes assessed, from high to low quinclorac-resistance, was: quinclorac-resistant, Chunhua, Hanshou, Shimen, Hekou, Dingcheng, and quinclorac-susceptible. With an increased in the level of quinclorac-resistance, the germination rate, length of young shoots and roots, and fresh weight of E. crusgalli were all decreased compared with that in more susceptible biotypes. However, there were no significant differences between quinclorac-resistant and susceptible E. crusgalli biotypes without polyethylene glycol 6000 treatment. Drought had a more obvious effect on glutathione S-transferases (GST) activity, determined by spectrophotometric method, in quinclorac-resistant E. crusgalli. Higher resistance level biotypes showed greater activity, and when treated with polyethylene glycol 6000 for 3 days, all E. crusgalli biotypes showed the highest GST activity. This study demonstrated that as the level of quinclorac-resistance increased, the rate of seed germination decreased, while the growth of young buds, young roots, and fresh weight decreased. Increased quinclorac-resistance may be related to the increased metabolic activity of GST in E. crusgalli.