Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(15): 6972-6979, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38567571

RESUMEN

Single-crystal membranes (SCMs) show great promise in the fields of sensors, light-emitting diodes, and photodetection. However, the growth of a large-area single-crystal membranes is challenging. We report a new organic-inorganic SCMs [HCMA]2CuBr4 (HCMA = cyclohexanemethylamine) crystallized at the gas-liquid interface. It also has low-temperature ferromagnetic order, high-temperature dielectric anomalies, and narrow band gap indirect semiconductor properties. Specifically, the reversible phase transition of the compound occurs at 350/341 K on cooling/heating and exhibits dielectric anomalies and stable switching performance near the phase transition temperature. The ferromagnetic exchange interaction in the inorganic octahedra and the organic layer enables ferromagnetic ordering at low-temperature 10 K. Finally, the single crystal exhibits an indirect semiconducting property with a narrow band gap of 0.99 eV. Such rich multichannel physical properties make it a potential application in photodetection, information storage and sensors.

2.
Inorg Chem ; 63(8): 3913-3920, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38361417

RESUMEN

Organic-inorganic hybrid perovskites (OIHPs) have received particular attention due to their characteristic structural tunability and flexibility. These features make OIHPs behave with excellent modifications on macroscopic properties, such as ferroicity or semiconductor performances, etc. Herein, we report two 2D hybrid stibium-based halide perovskite (C3H7N)3Sb2X9 (X = Br, 1; Cl, 2) ferroelastic semiconductor possessing dual switching properties of dielectric and second harmonic generation (SHG). Notably, these two hybrids exhibit halogen-regulated ferroelasticity and semiconductor properties. There is a significant difference in Curie temperature (Tc) and X-ray radiation detection sensitivity (S), i.e., the ΔTc and ΔS are 38 K and 87 µC Gyair-1 cm-2, respectively. Meanwhile, crystals 1 and 2 do not show dark current drift in cyclic measurements of different radiation doses with stable switching ratios of 30 and 10, separately. Meanwhile, these results were proven by scientific experimental results and density functional theory (DFT) calculations. Our work presents a facile and practical method to regulate macroproperties on the molecular level, providing a new vision to develop hybrid perovskite ferroic-photoelectric materials.

3.
Dalton Trans ; 52(33): 11558-11564, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37545469

RESUMEN

Zero-dimensional (0D) hybrid metal halides have attracted much attention due to their rich composition, excellent optical stability, large exciton binding energy, etc. Photoelectric switchable multifunctional materials can integrate multiple physical properties (e.g., ferroelectricity, photoluminescence, magnetic, etc.) into one device and are widely used in many fields such as smart switches, sensors, etc. However, multifunctional materials with thermal energy storage, stimulant dielectric response, and light-emitting properties are rarely reported. Here, we synthesized a new organic-inorganic hybrid metal halide single crystal [TEMA]2MnBr4 (1) (TEMA+ = triethylmethylammonium). Compound 1 undergoes a reversible phase transition at a high temperature of 344/316 K, having a large thermal hysteresis of 28 K and exhibits high stability dielectric switching characteristics near the phase transition temperature. The single crystal exhibits green emission at 513 nm under UV excitation, originating from the 4T1g(G) → 6A1g(S) transition of Mn2+ ions. Excitingly, this single crystal's photoluminescence quantum yield (PLQY) is as high as 80.78%. This work provides a strategy for the development of organic-inorganic hybrid optoelectronic multifunctional materials with high-efficient light emission and switchable dielectric properties.

4.
Dalton Trans ; 52(9): 2799-2803, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36752146

RESUMEN

As promising functional materials, organic-inorganic hybrid metal halide perovskites have attracted significant interest because of their excellent photovoltaic performance. However, although considerable efforts have been made, three-dimensional (3D) metal halide perovskites beyond lead halides have been rarely reported. Herein, a new 3D organic-inorganic hybrid ferroelectric material (Me-Hdabco)CsI3 (1, Me-Hdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane) was synthesized and characterized. 1 underwent a ferroelectric to paraelectric phase transition at Tc = 441 K, which was investigated by differential scanning calorimetry (DSC), dielectric measurements, and variable temperature structural analyses. Moreover, 1 shows a clear ferroelectric domain switching recorded by piezoelectric force microscopy. More interestingly, the pristine colorless crystal of 1 has no photoluminescence properties, while 10% Sn(II):(Me-Hdabco)CsI3 shows intense photoluminescence with a quantum yield of 8.90% under UV excitation. This finding will open up a new avenue to probe organic-inorganic hybrid multifunctional materials integrated ferroelectric and photoluminescence.

5.
Front Chem ; 10: 969156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991599

RESUMEN

Two new organic-inorganic hybrid double perovskites (R3HQ)4CsSm(NO3)8 (1) (R3HQ = (R)-(-)-3-quinuclidinol) and (R3HQ)4CsEu(NO3)8 (2) were synthesized and characterized. Compounds 1 and 2 exhibit obvious phase transitions at 379 and 375 K, respectively, confirmed by differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction. The rapid switching between high- and low-dielectric states makes it a typical dielectric material with a switchable dielectric constant for thermal stimulus response. Furthermore, 1 and 2 show attractive photoluminescence and paramagnetic behavior, and the fluorescence quantum yield of 2 reached 14.6%. These results show that compounds 1 and 2 can be used as excellent candidates for multifunctional intelligent materials, which also provides a new way for development of multifunctional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA