Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 202: 107942, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37562204

RESUMEN

Dendrobium catenatum, which belongs to the Orchidaceae family, has been used as a traditional medicine and healthy food in China for over 2000 years, and is of enormous economic value. Polysaccharides and flavonoids are two major functional ingredients in D. catenatum stems that contribute to its health benefits. D. catenatum lives in close association with endophytic fungi, but the literature regarding the further relations between them, especially the fungal-induced accumulation of metabolites in the host plant, is sparse. Our previous study showed that Pestalotiopsis sp. DO14 isolated from D. catenatum improved the host plant growth and metabolite accumulation. This study was performed to investigate dynamic variations of the growth traits, key metabolites (polysaccharides and flavonoids), and expression of key genes of D. catenatum under conditions of the DO14 colonization. Colonization with DO14 promoted D. catenatum growth as indicated by increased leaf area, mid-stem thickness, and plant height. The content of polysaccharides, mannose, and sucrose increased even without DO14 entering the host cells or forming a mature symbiotic relationship concurrent with improved photosynthesis rate. Furthermore, DO14 induced upregulation of genes involved in sugar and flavonoid metabolism, especially phosphoenolpyruvate carboxykinase (PCKA), chalcone synthase (CHS) and UDP-glycose flavonoid glycosyltransferase (UFGT). These observations suggested that endophytic fungi induce the accumulation of polysaccharides and flavonoids by plants, increasing the efficiency of carbon assimilation and carbon turnover. The findings of this study provide insight into the mechanisms underlying Orchidaceae-endophyte interactions, and suggest potential novel applications of endophytic fungi in D. catenatum breeding to improved plant quality.


Asunto(s)
Dendrobium , Flavonoides , Dendrobium/genética , Transcriptoma , Pestalotiopsis/genética , Fitomejoramiento , Polisacáridos/análisis , Metaboloma
2.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1212-1217, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005805

RESUMEN

Rhizome rot is one of the main disease in the cultivation of Polygonatum cyrtonema, and it is also a global disease which seriously occurs on the perennial medicinal plants such as Panax notoginseng and P. ginseng. There is no effective control method at present. To identify the effects of three biocontrol microbes(Penicillium oxalicum QZ8, Trichoderma asperellum QZ2, and Brevibacillus amyloliquefaciens WK1) on the pathogens causing rhizome rot of P. cyrtonema, this study verified six suspected pathogens for their pathogenicity on P. cyrtonema. The result showed that Fusarium sp. HJ4, Colletotrichum sp. HJ4-1, and Phomopsis sp. HJ15 were the pathogens of rhizome rot of P. cyrtonema, and it was found for the first time that Phomopsis sp. could cause rhizome rot P. cyrtonema. Furthermore, the inhibitory effects of biocontrol microbes and their secondary metabolites on three pathogens were determined by confrontation culture. The results showed that the three tested biocontrol microbes significantly inhibited the growth of three pathogens. Moreover, the secondary metabolites of T. asperellum QZ2 and B. amyloliquefaciens WK1 showed significant inhibition against the three pathogens(P<0.05), and the effect of B. amyloliquefaciens WK1 sterile filtrate was significantly higher than that of high tempe-rature sterilized filtrate(P<0.05). B. amyloliquefaciens WK1 produced antibacterial metabolites to inhibit the growth of pathogens, and the growth inhibition rate of its sterile filtrate against three pathogens ranged from 87.84% to 93.14%. T. asperellum QZ2 inhibited the growth of pathogens through competition and antagonism, and P. oxalicum QZ8 exerted the inhibitory effect through competition. The research provides new ideas for the prevention and treatment of rhizome rot of P. cyrtonema and provides a basis for the di-sease control in other crops.


Asunto(s)
Polygonatum , Rizoma
3.
Phytopathology ; 113(1): 70-79, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35876764

RESUMEN

Southern blight caused by Sclerotium delphinii has a devastating effect on Dendrobium catenatum (an extremely valuable medicinal and food homologous Orchidaceae plant). However, the mechanisms underlying S. delphinii infection and D. catenatum response are far from known. Here, we investigated the infection process and mode of S. delphinii through microscopic observations of detached leaves and living plantlets and further explored the hormonal and metabolomic responses of D. catenatum during S. delphinii infection by using the widely targeted metabolome method. The results showed that S. delphinii infection involves two stages: a contact phase (12 to 16 h after inoculation) and a penetration stage (20 h after inoculation). S. delphinii hyphae could penetrate leaves directly (via swollen hyphae and the formation of an infection cushion) or indirectly (via stomatal penetration), causing water-soaked lesions on leaves within 24 to 28 h after inoculation and expanded thereafter. The content of jasmonates increased after the hyphal contact and remained at high levels during S. delphinii infection, whereas the ethylene precursor (1-aminocyclopropanecarboxylic acid) accumulated significantly after penetration. Furthermore, metabolites of the phenylpropanoid and flavonoid pathways were enriched after pathogen penetration, whereas several amino acids accumulated in significant amounts at the late stage of infection. Moreover, some other associated metabolites were significantly altered during pathogen infection. Therefore, the jasmonate, phenylpropanoid, flavonoid, and amino acid pathways could play crucial roles in D. catenatum resistance to S. delphinii infection. This study provides insight into the prevention and control of southern blight disease of D. catenatum.


Asunto(s)
Basidiomycota , Dendrobium , Dendrobium/química , Enfermedades de las Plantas , Flavonoides
4.
Curr Res Food Sci ; 5: 1882-1896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276242

RESUMEN

Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.

5.
BMC Microbiol ; 22(1): 221, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36127644

RESUMEN

BACKGROUND: The orchid growth and development often associate with microbes. However, the interaction between plant performance and microbial communities within and surrounding plants is less understood. Dendrobium catenatum, which used to be an endangered orchid species, has become a billion dollar industry in China. Simulated natural cultivation modes, such as living tree epiphytic (LT) and cliff epiphytic (CE) cultivations, improve the production or quality of D. catenatum and contribute to the development of D. catenatum industry. In a previous study, morphological characteristics, anatomical structure, and main bioactive components (polysaccharides and ethanol-soluble extractives) of D. catenatum grown under LT and CE significantly differed from a facility cultivation mode, pot (PO) cultivation, were observed. Whether cultivation mode affects bacterial and fungal communities of D. catenatum, thereby affecting the chemical quality of this plant, need to be explored. RESULTS: Both three plant organs (leaf, stem, and root) and cultivating substrates obtained under three cultivation modes: living tree epiphytic (LT), cliff epiphytic (CE), and pot (PO) cultivation were examined by adopting high-throughput sequencing methods. Subsequently, bacterial and fungal correlations with D. catenatum main chemical components, stem polysaccharides and ethanol-soluble extractives and leaf phenols and flavonoids, were elucidated. The results showed that microbial communities of the plants and substrates are both influenced by the cultivation mode. However, the plants and their cultivating substrates exhibited different patterns of bacterial and fungal composition, with clearly distinguished dominant bacterial groups, but shared dominance among fungal groups. Bacteria and fungi differed in abundance, diversity, and community structure, depending on the cultivation environment and plant organ. Both bacterial and fungal communities were affected by cultivation mode and plant organ. In both plants and substrates, PO bacterial and fungal community structure differed significantly from those of LT and CE modes. Bacterial and fungal community structure differed significantly between roots and the other two plant organs examined (stems and leaves). Several bacteria and fungi were positively correlated with main chemical components in D. catenatum. CONCLUSIONS: The findings indicate that microbial communities of the plants and substrates were both influenced by the cultivation mode and plant organ, and some of them were positively correlated with main chemical components in D. catenatum. The research would enhance our understanding of interactions between Dendrobium and the microbial environment, and to provide a theoretical basis for the development of improved D. catenatum cultivation methods.


Asunto(s)
Dendrobium , Micobioma , Bacterias/genética , Dendrobium/química , Etanol , Flavonoides , Fenoles , Plantas , Polisacáridos , Árboles
6.
Front Plant Sci ; 13: 956210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982703

RESUMEN

Dendrobium catenatum, belonging to the Orchidaceae, is a precious Chinese herbal medicine. Sclerotium delphinii (P1) is a broad-spectrum fungal disease, which causes widespread loss in the near-wild cultivation of D. catenatum. Thus, resistance breeding of D. catenatum has become the key to solve this problem. The basic helix-loop-helix (bHLH) gene family is closely related to plant resistance to external stresses, but the related research in D. catenatum is not deep enough yet. Phylogenetic analysis showed that 108 DcbHLH genes could be divided into 23 subgroups. Promoter cis-acting elements revealed that DcbHLHs contain a large number of stress-related cis-acting elements. Transcriptome analysis of MeJA and P1 treatment manifested that exogenous MeJA can change the expression pattern of most bHLH genes, especially the IIIe subgroup, including inhibiting the expression of DcbHLH026 (MYC2a) and promoting the expression of DcbHLH027 (MYC2b). Subcellular localization indicated that they were located in the nucleus. Furthermore, exogenous MeJA treatment significantly delayed disease time and reduced lesion size after infection with P1. DcMYC2b-overexpression Arabidopsis lines showed significantly smaller lesions after being infected with P1 than the wild type, indicating that DcMYC2b functions as an important positive regulator in D. catenatum defense against P1. Our findings shed more insights into the critical role of the DcbHLH family in plants and the resistance breeding of D. catenatum.

7.
BMC Plant Biol ; 21(1): 360, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362300

RESUMEN

BACKGROUND: Dendrobium catenatum belongs to the Orchidaceae, and is a precious Chinese herbal medicine. In the past 20 years, D. catenatum industry has developed from an endangered medicinal plant to multi-billion dollar grade industry. The necrotrophic pathogen Sclerotium delphinii has a devastating effection on over 500 plant species, especially resulting in widespread infection and severe yield loss in the process of large-scale cultivation of D. catenatum. It has been widely reported that Jasmonate (JA) is involved in plant immunity to pathogens, but the mechanisms of JA-induced plant resistance to S. delphinii are unclear. RESULTS: In the present study, the role of JA in enhancing D. catenatum resistance to S. delphinii was investigated. We identified 2 COI1, 13 JAZ, and 12 MYC proteins in D. catenatum genome. Subsequently, systematic analyses containing phylogenetic relationship, gene structure, protein domain, and motif architecture of core JA pathway proteins were conducted in D. catenatum and the newly characterized homologs from its closely related orchid species Phalaenopsis equestris and Apostasia shenzhenica, along with the well-investigated homologs from Arabidopsis thaliana and Oryza sativa. Public RNA-seq data were investigated to analyze the expression patterns of D. catenatum core JA pathway genes in various tissues and organs. Transcriptome analysis of MeJA and S. delphinii treatment showed exogenous MeJA changed most of the expression of the above genes, and several key members, including DcJAZ1/2/5 and DcMYC2b, are involved in enhancing defense ability to S. delphinii in D. catenatum. CONCLUSIONS: The findings indicate exogenous MeJA treatment affects the expression level of DcJAZ1/2/5 and DcMYC2b, thereby enhancing D. catenatum resistance to S. delphinii. This research would be helpful for future functional identification of core JA pathway genes involved in breeding for disease resistance in D. catenatum.


Asunto(s)
Basidiomycota/patogenicidad , Ciclopentanos/metabolismo , Dendrobium/microbiología , Oxilipinas/metabolismo , Inmunidad de la Planta/fisiología , Proteínas de Plantas/genética , Acetatos/farmacología , Ciclopentanos/farmacología , Dendrobium/efectos de los fármacos , Dendrobium/inmunología , Dendrobium/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxilipinas/farmacología , Filogenia , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/inmunología , Transducción de Señal/genética
8.
Front Plant Sci ; 12: 700200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154169

RESUMEN

In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.

9.
Fungal Biol ; 124(10): 864-876, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32948274

RESUMEN

To examine how host plant genotype, endophytic fungal species, and their interaction may affect growth and key chemical content and composition in an important orchid species, we assessed four Dendrobium catenatum cultivars co-cultured with three fungi previously isolated from D. catenatum. Fungal endophytes (Tulasnella sp., Leptosphaeria microscopica, and Guignardia sp.) specifically affected the growth and chemical composition of the four cultivars. Fungal infection significantly increased certain growth traits, especially mid-stem thickness, stem biomass, stem polysaccharide and ethanol-soluble extractive content, and leaf flavonoid and phenol content. Presence or abundance of some key chemical components was also altered by fungal treatment. These increases and alterations were highly dependent on the host genotype. The findings of this study contribute to our understanding of Dendrobium and endophytic fungi interactions, and provide vital information for improving the development and use of endophytic fungi in D. catenatum breeding.


Asunto(s)
Ascomicetos , Basidiomycota , Dendrobium/química , Leptosphaeria , Dendrobium/genética , Dendrobium/microbiología , Endófitos , Genotipo
10.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1789-1792, 2019 May.
Artículo en Chino | MEDLINE | ID: mdl-31342703

RESUMEN

In order to scientifically prevent and control Dendrobium catenatum southern blight disease,the main factors related to this disease occurrence,the pathogen( Sclerotium delphinii),environmental factors( temperature and humidity) and D. catenatum germplasms,were investigated. The results showed that reaching 25-30 ℃ temperature and over 95% humidity simultaneously should be the main conditions for the occurrence and prevalence of D. catenatum southern blight disease. Moreover,the S. delphinii-infected plants and their contaminated substrates were the disease spreading sources. Therefore,removing the infected plants,dealing with the contaminated substrates,keeping air ventilation,and reducing air humidity are the effective ways to prevent and control the occurrence and prevalence of D. catenatum southern blight disease. The research also indicated that D. catenatum has different resistances to the southern blight disease depending on germplasm. The present study lays important foundations for the breeding of D. catenatum diseaseresistant varieties and the further analysis of the infection and resistance mechanisms underlying southern blight disease.


Asunto(s)
Basidiomycota/patogenicidad , Dendrobium/microbiología , Enfermedades de las Plantas/microbiología , Humedad , Temperatura
11.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1588-1595, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29751704

RESUMEN

In order to investigate the effects of germplasm and host tree trunk on endophytic fungal communities in epiphytic Dendrobium catenatum, a total of 3 835 isolates were recovered from roots, stems and leaves of four D. catenatum germplasms attached to one kind of host tree trunk and one germplasm attached to four kinds of epiphyte-host tree trunks. A total of 152 taxa were identified and classified based on the fungal cultural characteristics and phylogenetic analyses of ITS sequences. The taxa were assigned to 60 genera, 35 families, 21 orders and 5 classes of 2 phyla. The results indicated that D. catenatum cultivated in stereo cultivation harbor variety of fungi. The dominant fungal groups were different between Lin'an and Yiwu. Moreover, several groups showed geographical specificity, such as Arthrinium, Coniochaeta, Fusarium, Neofusicoccum and Zopfiella only dominating in Panshan of Lin'an, while Alternaria, Bjerkandera, Cercophora, Nigrospora and Trichoderma only dominating in Shangxi of Yiwu. There was no significant difference in diversity or species richness of endophytic fungi neither among germplasm nor host tree trunk. However, the richness and diversity indices exhibited a strong dependence on tissue type (P<0.05). The germplasm and host tree trunk impact the distribution patterns of endophytic fungi less than tissue type. Nevertheless, the relative frequencies of the dominant fungal groups were different among germplasms or host tree trunk types. Furthermore, there were some fungal species specific to certain germplasm or host tree trunk. This might be due to the distinctions in growth traits and chemical compositions of D. catenatum owning to the differences in D. catenatumgenetic background and microenvironment of host tree. Most of fungal taxa exhibit tissue specificity or preference. These results provide the basis for the study on the relationship between endophytic fungi and D. catenatum in stereo cultivation mode.


Asunto(s)
Ascomicetos , Dendrobium , Micobioma , Biodiversidad , Endófitos , Filogenia , Especificidad de la Especie
12.
Zhongguo Zhong Yao Za Zhi ; 42(16): 3084-3089, 2017 Aug.
Artículo en Chino | MEDLINE | ID: mdl-29171225

RESUMEN

The study was aimed to clarify the effect of three cultivation environments on the growth and metabolism of Dendrobium catenatum C13 group. There were three different cultivation conditions including rock epiphytic cultivation, pear epiphytic cultivation and pot cultivation. Morphological characteristics and agronomic characters of D. catenatum were observed and measured. Microstructure, contents of polysaccharide and alcohol-soluble extracts were measured by paraffin section method, phenol-sulfuric acid method and hot-dip method, respectively. The result showed that the cultivation environment significantly affected the growth of D. catenatum, the leaves of D. catenatum that cultivated on the rock and pear were sparse and small, the stems were short and purple and the root system was developed. Compare with potted cultivation, D. catenatum from rock epiphytic cultivation and pear epiphytic cultivation showed the following characteristics in the microstructure: the upper epidermis became thicker, the epidermal hair in the epidermis became denser, stomatal showed smaller and denser, the cell wall of exodermis, endoderm and medulla became thicker, the cell of velamen, exodermis, endoderm and medulla were smaller and arranged more closely, but the cultivation environment did not produce specific tissue structure, mainly changed in the structural parameters of size and quantity. The growth environments also influenced contents of polysaccharides and alcohol-soluble extracts. The dontents of polysaccharides and alcohol-soluble extracts in D. catenatum from rock epiphytic were the highest, reached 37.34% and 11.66%, the second was pear epiphytic, both higher than pot cultivation, alcohol-soluble extracts contents in D. catenatum from rock epiphytic are more complex, which shows that rock epiphytic is conducive to the accumulation of secondary metabolites in D. catenatum.


Asunto(s)
Dendrobium/crecimiento & desarrollo , Plantas Medicinales/crecimiento & desarrollo , Polisacáridos/análisis , Dendrobium/química , Extractos Vegetales/análisis , Hojas de la Planta , Plantas Medicinales/química
13.
Zhongguo Zhong Yao Za Zhi ; 41(16): 2993-2997, 2016 Aug.
Artículo en Chino | MEDLINE | ID: mdl-28920337

RESUMEN

In order to make Dendrobium officinale return to the nature, the temperature and humidity in whole days of the built rock model with different slopes and aspects in the natural distribution of wild D. officinale in Tianmu Mountain were recorded by MH-WS01 automatic recorder. The results showed that the slope has a significant impact on the extreme temperature on the surface of the rocks. In summer, the extreme temperature on the surface of horizontal or soft rock can reach to 69.4 ℃, while the temperatures were lower than 50 ℃ on the vertical rock. In winter, the temperatures on the surface of vertical rock were higher and the low temperature duration was shorter than those on the horizontal or soft rock. Also, the humidity of the rocks was significantly influenced by the slope. The monthly average humidity on the surface of vertical rock was above 80%RH. Furthermore, the aspect had a significant impact on the temperature and humidity on the surface of the rocks, but had no significant effect on the daily mean temperature and extreme temperature on the surface of vertical rock. Therefore, the slope affects the survival of D. officinale by affecting the extreme temperature of rocks and affects the growth of D. officinale by affecting the humidity. The choice of slope is the key to the success of cliff epiphytic cultivation for D. officinale.


Asunto(s)
Dendrobium/crecimiento & desarrollo , Humedad , Temperatura , China , Ecología , Estaciones del Año
14.
Zhongguo Zhong Yao Za Zhi ; 41(9): 1602-1607, 2016 May.
Artículo en Chino | MEDLINE | ID: mdl-28891606

RESUMEN

The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering.


Asunto(s)
Dendrobium/microbiología , Endófitos , Hongos , Plantones/crecimiento & desarrollo , Dendrobium/crecimiento & desarrollo , Polisacáridos/análisis , Plantones/microbiología , Técnicas de Cultivo de Tejidos
15.
Zhongguo Zhong Yao Za Zhi ; 41(12): 2208-2212, 2016 Jun.
Artículo en Chino | MEDLINE | ID: mdl-28901061

RESUMEN

To reveal the relationship between endophytic fungi and the functional components, saccharides and flavonoids in the mycelia or fermented liquor of 21 endophytic fungi in D.officinale were detected using HPLC and UV spectrophotometer.The results showed that the ethyl acetate extracts from 21 fungal strains all contain flavonoids.According to the chromatographic retention time of HPLC and UV spectra characteristics of flavonoids, strain DO49 was found produce naringenin, strains DO23, DO81 and DO83 were found produce rutin.The water-soluble extracts from 21 strains all had polysaccharides.However, there was difference in the composition of monosaccharides derived from polysaccharides among different strains.According to the composition of monosaccharides and the peak area ratio of mannose and glucose, the fungal strains including DO23, DO26, DO81, DO54, DO55, DO83 product polysaccharides associated with D.officinale were selected.In conclusion, based on the saccharides and flavonoids, the excellent endophytic fungal strains DO23, DO81 and DO83 were selected, which could produce the same flavonoids and similar polysaccharides in D.officinale.


Asunto(s)
Dendrobium/microbiología , Flavonoides/análisis , Hongos/química , Polisacáridos/análisis , Endófitos/química
16.
Molecules ; 21(1): E14, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26703552

RESUMEN

Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 µg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 µM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 µM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Dendrobium/microbiología , Endófitos/química , Saccharomycetales/química , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dendrobium/fisiología , Endófitos/clasificación , Endófitos/aislamiento & purificación , Células HL-60 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación
17.
Zhongguo Zhong Yao Za Zhi ; 40(12): 2314-7, 2015 Jun.
Artículo en Chino | MEDLINE | ID: mdl-26591516

RESUMEN

This paper revealed the accumulation regularity of polysaccharides and alcohol-soluble extracts contents of Dendrobium officinale leaves, which have provided basis for the development and utilization of the leaves. The polysaccharides and alcohol-soluble extracts contents of three D. officinale strains leaves collected in different growing periods were determined by phenol-sulfric acid method and hot-dip method respectively. The results showed that the content of polysaccharides in leaves was 4.45% -12.17%, and was about a quarter in stems. The alcohol-soluble extracts content in leaves was 7.45% - 29.34%, and was 1.5 times that of stems. The quality variation of polysaccharides in leaves was closely related to the phenophase. The leaves with lower level of metabolism in three stages: winter, early germination stage and deciduous period, which led to lower content of polysaccharides. The leaves at the vigorous growth stage with higher content of polysaccharides. The alcohol-soluble extracts were closely associated to the formation and germination of buds. The content of alcohol-soluble extracts peaked before sprout, and promoted the growth of new shoots.


Asunto(s)
Dendrobium/química , Medicamentos Herbarios Chinos/metabolismo , Polisacáridos/metabolismo , Dendrobium/metabolismo , Medicamentos Herbarios Chinos/análisis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Polisacáridos/análisis , Estaciones del Año
18.
Zhongguo Zhong Yao Za Zhi ; 40(8): 1468-72, 2015 Apr.
Artículo en Chino | MEDLINE | ID: mdl-26281581

RESUMEN

The aim of the paper is to reveals the variations of Dendrobium officinale amino acids in different strains and parts for breeding excellent varieties, and providing scientific basis for the expanding of medicinal or edible parts. The contents of 17 amino acids in 11 strains of D. officinale were determined by hydrochloric acid hydrolysis method. The total amino acids content of leaves was from 6.76 to 7.97 g per 100 g, and the stems was from 1.61 to 2.44 g per 100 g. As the content of amino acids in leaves was significantly higher than that of stems, and the composition was close to the ideal protein standard proposed by FAO/WHO. The leaves of D. officinale had the good prospect for the development of functional foods. The 9 x 66 strain which with high yield and polysaccharide content had the highest amino acids content both in stems and leaves, indicated crossbreeding could improve the quality of varieties. Compared the amino acids content of D. officinale in two main harvest periods, the harvest time has a significant impact on amino acids content of D. officinale. This study demonstrates that the harvesting time of D. officinale stems is suitable for leaves as well, which is the period before bolssom.


Asunto(s)
Aminoácidos/química , Dendrobium/química , Medicamentos Herbarios Chinos/química , Dendrobium/clasificación , Filogenia , Hojas de la Planta/química , Hojas de la Planta/clasificación
19.
Zhongguo Zhong Yao Za Zhi ; 39(24): 4769-72, 2014 Dec.
Artículo en Chino | MEDLINE | ID: mdl-25898575

RESUMEN

To reveal the variation of polysaccharides and alcohol-soluble extract contents of Dendrobium officinale, the polysaccharides and alcohol-soluble extracts contents of three D. officinale strains were determined by phenol-sulfuric acid method and hot-dip method, respectively. The results showed that the contents of polysaccharides and alcohol-soluble extracts and their total content were significantly different among D. officinale samples collected in different periods, and the variations were closely related to the phenology of D. officinale. Additionally, the quality variation of polysaccharides was closely related to the flowering of D. officinale, while the alcohol-soluble extracts was closely associated to the formation and germination of buds. According to the dynamic variation of these two compounds, it is more reasonable to harvest D. officinale at biennials pre-bloom than at specific harvesting month considering polysaccharides content. It is better to harvest before the germination of buds considering alcohol-soluble extracts. While with regards to both polysaccharides and alcohol-soluble extract, it is better to harvest this plant at the period from the sprouting to pre-bloom next year.


Asunto(s)
Dendrobium/química , Extractos Vegetales/aislamiento & purificación , Polisacáridos/aislamiento & purificación
20.
Zhongguo Zhong Yao Za Zhi ; 38(4): 524-7, 2013 Feb.
Artículo en Chino | MEDLINE | ID: mdl-23713277

RESUMEN

OBJECTIVE: To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). METHOD: The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. RESULT: The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. CONCLUSION: Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.


Asunto(s)
Fraccionamiento Químico/métodos , Dendrobium/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Polisacáridos/análisis , Dendrobium/crecimiento & desarrollo , Desecación , Modelos Lineales , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA