Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Foods ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38890997

RESUMEN

Dendrobium officinale (D. officinale), often used as a dual-use plant with herbal medicine and food applications, has attracted considerable attention for health-benefiting components and wide economic value. The antioxidant ability of D. officinale is of great significance to ensure its health care value and safeguard consumers' interests. However, the common analytical methods for evaluating the antioxidant ability of D. officinale are time-consuming, laborious, and costly. In this study, near-infrared (NIR) spectroscopy and chemometrics were employed to establish a rapid and accurate method for the determination of 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) in D. officinale. The quantitative models were developed based on the partial least squares (PLS) algorithm. Two wavelength selection methods, namely the genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS) method, were used for model optimization. The CARS-PLS models exhibited superior predictive performance compared to other PLS models. The root mean square errors of cross-validation (RMSECVs) for ABTS, FRAP, and DPPH were 0.44%, 2.64 µmol/L, and 2.06%, respectively. The results demonstrated the potential application of NIR spectroscopy combined with the CARS-PLS model for the rapid prediction of antioxidant activity in D. officinale. This method can serve as an alternative to conventional analytical methods for efficiently quantifying the antioxidant properties in D. officinale.

2.
J Adv Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825316

RESUMEN

INTRODUCTION: The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS: We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS: FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS: Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124694, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38914030

RESUMEN

The healthy benefits of seaweed have increased its market demand in recent times. Quality control is crucial for seaweed to ensure the customers' interest and the sustainable development of seaweed farming industry. This study developed a quality control method for seaweed Sargassum fusiforme, rapid and simple, using near-infrared spectroscopy (NIR) and chemometrics for the prediction of antioxidant capacity of S. fusiforme from different growth stages, S. fusiforme was distinguished according to growth stage by partial least squares-discriminant analysis (PLS-DA) and particle swarm optimization-support vector machine (PSO-SVM). The antioxidant properties including 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) were quantified using competitive adaptive reweighted sampling (CARS)-PLS model. Based on the spectra data preprocessed by multiplicative scatter and standard normal variate methods, the PSO-SVM models can accurately identify the growth stage of all S. fusiforme samples. The CARS-PLS models exhibited good performance in predicting the antioxidant capacity of S. fusiforme, with coefficient of determination (RP2) and root mean square error (RMSEP) values in the independent prediction sets reaching 0.9778 and 0.4018 % for ABTS, 0.9414 and 2.0795 % for DPPH, and 0.9763 and 2.4386 µmol L-1 for FRAP, respectively. The quality and market price of S. fusiforme should increase in the order of maturation < growth < seedling regarding the antioxidant property. The overall results indicated that the NIR spectroscopy accompanied by chemometrics can assist for the quality control of S. fusiforme in a more rapid and simple manner. This study also provided a customer-oriented concept of seaweed quality grading based on deep insight into the antioxidant capability of S. fusiforme at different growth stages, which is highly valuable for precise quality control and standardization of seaweed market.

4.
Foods ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672872

RESUMEN

Dendrobium officinale has drawn increasing attention as a dual-use plant with herbal medicine and food applications. The efficient quality evaluation of D. officinale is essential to ensuring its nutritional and pharmaceutical value. Given that traditional analytical methods are generally time-consuming, expensive, and laborious, this study developed a rapid and efficient approach to assess the quality of D. officinale from different geographical origins by near-infrared (NIR) spectroscopy and chemometrics. Total saponins, mannitol, and naringenin were utilized as quality indicators. Two wavelength selection methods, namely, uninformative variable elimination and competitive adaptive reweighted sampling (CARS), were utilized to enhance the prediction accuracy of the quantification model. Moreover, multiple spectral pretreatment methods were applied for model optimization. Results indicated that the partial least squares (PLS) model constructed based on the wavelengths selected by CARS exhibited superior performance in predicting the contents of the quality indicators. The coefficient of determination (RP2) and root mean square error (RMSEP) in the independent test sets were 0.8949 and 0.1250 g kg-1 for total saponins, 0.9664 and 0.2192 g kg-1 for mannitol, and 0.8570 and 0.003159 g kg-1 for naringenin, respectively. This study revealed that NIR spectroscopy and the CARS-PLS model could be used as a rapid and accurate technique to evaluate the quality of D. officinale.

5.
Ecotoxicol Environ Saf ; 270: 115903, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176184

RESUMEN

Chlordane, a previously extensively utilized insecticidal pesticide, has since been prohibited, however, owing to its limited degradability, it continues to persist significantly in soil and water reservoirs, subsequently accumulating within plant and animal organisms, representing a substantial threat to human health. Despite extensive research conducted over the past few decades to investigate the toxic effects of chlordane, there remains a notable dearth of studies focusing on its impact on sleep activity. Therefore, in this study, the effects of short-term and long-term exposure to chlordane on the activity and sleep of Drosophila were investigated. When exposed to chlordane at a concentration of 1 µM, Drosophila lost body weight, decreased body size and resulted in lipid metabolism disorders. In addition, chlordane exposure altered the arousal and sleep behaviors of Drosophila. Short-term exposure to chlordane resulted in an increase in night-time sleep duration, while long-term exposure to chlordane resulted in an increase in activity and a decrease in sleep, as evidenced by a decrease in the duration of each sleep session and the appearance of sleep fragmentation. Under conditions of long-term chlordane exposure, reactive oxygen species levels were significantly up-regulated in Drosophila. Our results suggest that long-term chlordane exposure triggers oxidative stress damage in Drosophila, leading to sleep disruption. This study offers novel insights into the harmful impacts of environmental pollutants on human sleep patterns and proposes that mitigating the presence of chlordane in the environment could potentially contribute to the reduction of global sleep disorder prevalence.


Asunto(s)
Insecticidas , Plaguicidas , Contaminantes del Suelo , Animales , Humanos , Clordano/análisis , Drosophila/metabolismo , Contaminantes del Suelo/análisis , Insecticidas/análisis , Plaguicidas/análisis
6.
Genes (Basel) ; 14(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37895318

RESUMEN

Sargassum horneri, a prevalent species of brown algae found along the coast of the northwest Pacific Ocean, holds significant importance as a valuable source of bioactive compounds. However, its rapid growth can lead to the formation of a destructive "golden tide", causing severe damage to the local economy and coastal ecosystems. In this study, we carried out de novo whole-genome sequencing of S. horneri using next-generation sequencing to unravel the genetic information of this alga. By utilizing a reference-guided de novo assembly pipeline with a closely related species, we successfully established a final assembled genome with a total length of 385 Mb. Repetitive sequences made up approximately 30.6% of this genome. Among the identified putative genes, around 87.03% showed homology with entries in the NCBI non-redundant protein database, with Ectocarpus siliculosus being the most closely related species for approximately one-third of these genes. One gene encoding an alkaline phosphatase family protein was found to exhibit positive selection, which could give a clue for the formation of S. horneri golden tides. Additionally, we characterized putative genes involved in fucoidan biosynthesis metabolism, a significant pathway in S. horneri. This study represents the first genome-wide characterization of a S. horneri species, providing crucial insights for future investigations, such as ecological genomic analyses.


Asunto(s)
Sargassum , Algas Marinas , Algas Marinas/genética , Sargassum/genética , Sargassum/metabolismo , Ecosistema , Océano Pacífico
7.
Heliyon ; 9(6): e17389, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426790

RESUMEN

Triglyceride and glucose levels are important indicators for determining metabolic syndrome, one of the leading public-health burdens worldwide. Drosophila melanogaster is an ideal model for investigating metabolic diseases because it has 70% homology to human genes and its regulatory mechanism of energy metabolism homeostasis is highly similar to that of mammals. However, traditional analytical methods of triglyceride and glucose are time-consuming, laborious, and costly. In this study, a simple, practical, and reliable near-infrared (NIR) spectroscopic analysis method was developed for the rapid determination of glucose and triglyceride levels in an in vivo model of metabolic disorders using Drosophila induced by high-sugar or high-fat diets. The partial least squares (PLS) model was constructed and optimized using different spectral regions and spectral pretreatment methods. The overall results had satisfactory prediction performance. For Drosophila induced by high-sugar diets, the correlation coefficient (RP) and root mean square error of prediction (RMSEP) were 0.919 and 0.228 mmoL gprot-1 for triglyceride and 0.913 and 0.143 mmoL gprot-1 for glucose respectively; for Drosophila induced by high-fat diets, the RP and RMSEP were 0.871 and 0.097 mmoL gprot-1 for triglyceride and 0.853 and 0.154 mmoL gprot-1 for glucose, respectively. This study demonstrated the potential of using NIR spectroscopy combined with PLS in the determination of triglyceride and glucose levels in Drosophila, providing a rapid and effective method for monitoring metabolite levels during disease development and a possibility for evaluating metabolic diseases in humans in clinical practice.

8.
Heart Surg Forum ; 26(2): E148-E155, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972603

RESUMEN

BACKGROUND: Although the transplantation of tissue-engineered cardiac patches with adult bone marrow-derived mesenchymal stem cells (MSCs) can enhance cardiac function after acute or chronic myocardial infarction (MI), the recovery mechanism remains controversial. This experiment aimed to investigate the outcome measurements of MSCs within a tissue-engineered cardiac patch in a rabbit chronic MI model. METHODS: This experiment was divided into four groups: left anterior descending artery (LAD) sham-operation group (N = 7), sham-transplantation (control, N = 7), non-seeded patch group (N = 7), and MSCs-seeded patch group (N = 6). PKH26 and 5-Bromo-2'-deoxyuridine (BrdU) labeled MSCs-seeded or non-seeded patches were transplanted onto chronically infarct rabbit hearts. Cardiac function was evaluated by cardiac hemodynamics. H&E staining was performed to count the number of vessels in the infarcted area. Masson staining was used to observe cardiac fiber formation and to measure scar thickness. RESULTS: Four weeks after transplantation, a remarkable improvement in cardiac functionality could be distinctly observed, which was most significant in the MSCs-seeded patch group. Moreover, labeled cells were detected in the myocardial scar, with most of them differentiated into myofibroblasts, some into smooth muscle cells, and only a few into cardiomyocytes in the MSCs-seeded patch group. We also observed significant revascularization in the infarct area implanted in either MSCs-seeded or non-seeded patches. In addition, there were significantly greater numbers of microvessels in the MSCs-seeded patch group than in the non-seeded patch group.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Conejos , Cicatriz/patología , Médula Ósea , Infarto del Miocardio/cirugía , Infarto del Miocardio/patología , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/fisiología , Miocitos Cardíacos , Modelos Animales de Enfermedad
9.
J Agric Food Chem ; 71(4): 1771-1787, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689477

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The increasing NAFLD incidences are associated with unhealthy lifestyles. Currently, there are no effective therapeutic options for NAFLD. Thus, there is a need to develop safe, efficient, and economic treatment options for NAFLD. Brown algae, which are edible, contain abundant bioactive compounds, including polysaccharides and phlorotannins. They have been shown to ameliorate insulin resistance, as well as hepatic steatosis, and all of these biological functions can potentially alleviate NAFLD. Accumulating reports have shown that increasing dietary consumption of brown algae reduces the risk for NAFLD development. In this review, we summarized the animal experiments and clinical proof of brown algae and their bioactive compounds for NAFLD treatment within the past decade. Our findings show possible avenues for further research into the pathophysiology of NAFLD and brown algae therapy.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta , Hígado , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Phaeophyceae/química , Phaeophyceae/metabolismo
10.
Sci Total Environ ; 865: 161183, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581278

RESUMEN

Cadmium (Cd) is a widely distributed toxic heavy metal that enters the environment via anthropogenic mobilization and accumulates in plants and animals, causing metabolic abnormalities even mortality. Although the toxic effects and stress damage of cadmium have been investigated extensively over the past few decades, research on its ability to trigger ferroptosis, growth retardation, and behavioral abnormalities is insufficient. As a result, the effects of CdCl2 exposure on growth and development, activity and sleep, and ferroptosis in this study were examined in fruit fly (Drosophila melanogaster). When exposed to 0.5 mM CdCl2, the entire growth period from larvae to adults was prolonged, and the rates of pupation and eclosion were decreased. Additionally, CdCl2 exposure resulted in a decrease in body weight and individual size of fruit fly and high lethality rate. Moreover, CdCl2 exposure altered fruit fly behavior, including decreased activity and increased sleep duration, particularly in females. Ferrostatin-1 (Fer-1) is a potent selective ferroptosis inhibitor that effectively slows lipid hydroperoxide accumulation to rescue body size reduction and restore activity and sleep in CdCl2-exposed female flies. CdCl2 exposure could induce ferroptosis in fruit fly mechanistically, as evidenced by inhibition of Nrf2 signaling pathway, accumulation of lipid peroxidation, impairment of GPX4 antioxidant system, and upregulation of iron metabolism. Our findings suggest that Cd exposure triggers ferroptosis, which leads to growth retardation and behavioral disorders in fruit fly.


Asunto(s)
Cloruro de Cadmio , Ferroptosis , Animales , Femenino , Cadmio/farmacología , Cloruros , Drosophila , Drosophila melanogaster , Trastornos del Crecimiento
11.
Redox Biol ; 57: 102481, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36148770

RESUMEN

Metformin is widely used to surmount insulin resistance (IR) and type 2 diabetes. Accumulating evidence suggests that metformin may improve IR through regulating gut microbiota and bile acids. However, the underlying mechanisms remain unclear. Our metabolomic analysis showed that metformin significantly increased the accumulation of tauroursodeoxycholic acid (TUDCA) in intestine and liver from high-fat diet (HFD)-induced IR mice. TUDCA also alleviated IR, and reduced oxidative stress and intestinal inflammation in ob/ob mice. TUDCA blocked KEAP1 to bind with Nrf2, resulting in Nrf2 translocation into nuclear and initiating the transcription of antioxidant genes, which eventually reduced intracellular ROS accumulation and improved insulin signaling. Analysis of gut microbiota further revealed that metformin reduced the relative abundance of Bifidobacterium, which produces bile salt hydrolase (BSH). The reduction in BSH was probably crucial for the accumulation of TUDCA. Metformin also increased the proportion of Akkermanisia muciniphlia in gut microbiota of ob/ob mice via TUDCA. These beneficial effects of metformin in remodeling gut microbiota, reducing oxidative stress and improving insulin sensitivity were partly due to the accumulation of TUDCA, suggesting that TUDCA may be a potential therapy for metabolic syndrome.

12.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142699

RESUMEN

In the human body, the intestine is the largest digestive and immune organ, where nutrients are digested and absorbed, and this organ plays a key role in host immunity. In recent years, intestinal health issues have gained attention and many studies have shown that oxidative stress, inflammation, intestinal barrier damage, and an imbalance of intestinal microbiota may cause a range of intestinal diseases, as well as other problems. Brown algae polysaccharides, mainly including alginate, fucoidan, and laminaran, are food-derived natural products that have received wide attention from scholars owing to their good biological activity and low toxic side effects. It has been found that brown algae polysaccharides can repair intestinal physical, chemical, immune and biological barrier damage. Principally, this review describes the protective effects and mechanisms of brown algae-derived polysaccharides on intestinal health, as indicated by the ability of polysaccharides to maintain intestinal barrier integrity, inhibit lipid peroxidation-associated damage, and suppress inflammatory cytokines. Furthermore, our review aims to provide new ideas on the prevention and treatment of intestinal diseases and act as a reference for the development of fucoidan as a functional product for intestinal protection.


Asunto(s)
Productos Biológicos , Enfermedades Intestinales , Enfermedades Metabólicas , Phaeophyceae , Alginatos/metabolismo , Citocinas , Humanos , Phaeophyceae/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico
13.
Front Biosci (Landmark Ed) ; 27(8): 229, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-36042169

RESUMEN

BACKGROUND: Lactate dehydrogenase (LDH) is one of the important enzyme systems for glycolysis and gluconeogenesis. It can catalyze the reduction and oxidation reaction between propionic acid and L-lactic acid, which is usually overexpressed in cancer cells. Therefore, inhibiting the activity of LDH is a promising way for the treatment of cancer. In this study, an effective method based on ligand fishing and ultra performance liquid chromatography-mass spectrum (UPLC-MS) was established to screen and identify active ingredients from Selaginella doederleinii with potential inhibitory activity for LDH. METHODS: Firstly, LDH was immobilized on the magnetic nanoparticles (MNPs), three immobilization parameters including LDH concentration, immobilization time and pH were optimized by single factor and response surface methodology for maximum (max) immobilization yield. Then, a mixed model of galloflavin and chlorogenic acid (inhibitors and non-inhibitors of LDH) was used to verify the specificity of immobilized LDH ligand fishing, and the conditions of ligand fishing were further optimized. Finally, combined with UPLC-MS, immobilized LDH was used to simultaneously screen and identify potential LDH inhibitors from the ethyl acetate extract of Selaginella doederleinii. RESULTS: The prepared fishing material was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectrometer (FT-IR). The optimal immobilization conditions were obtained as LDH concentration of 0.7 mg/mL, pH value of 4.5, and immobilization time of 3.5 h. Under these conditions, the max immobilization yield was (3.79 ± 0.08) × 103 U/g. The specificity analysis showed that immobilized LDH could recognize and capture ligands, and the optimal ligand fishing conditions included that the incubation time was 30 min, the elution time was 20 min, and the concentration of methanol as eluent was 80%. Finally, two LDH inhibitors, amentoflavone and robustaflavone, were screened by immobilized LDH from the ethyl acetate extract of Selaginella doederleinii. CONCLUSIONS: The study provided a meaningful evidence for discovering the bioactive constituents in ethyl acetate extract of Selaginella doederleinii related to cancer treatment, and this ligand fishing method was feasible for screening enzyme inhibitors from similar complex mixtures.


Asunto(s)
Nanopartículas de Magnetita , Selaginellaceae , Acetatos , Cromatografía Liquida , L-Lactato Deshidrogenasa , Ligandos , Nanopartículas de Magnetita/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Selaginellaceae/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem/métodos
14.
Int J Biol Macromol ; 216: 728-740, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907465

RESUMEN

Obesity has become a global epidemic. Sargassum fusiforme fucoidan (Fuc) is a group of water-soluble heteropolysaccharides that exhibits a wide range of medicinal functions. It consists of l-fucose and sulfate groups, with l-fucose as the main monosaccharide. This study investigated the therapeutic effects of Fuc on diet-induced obesity (DIO) in C57BL/6J female mice. Fuc significantly alleviated obesity in mice induced by high-fat high-fructose (HFHF) feeding, inhibiting body weight gain, reducing fat accumulation, and improving hepatic steatosis. In addition, Fuc significantly improved glucose tolerance and insulin sensitivity by enhancing the phosphorylation level of AKT (at Ser473) in the adipose tissues. Mechanistically, although Fuc did not decrease the energy intake in DIO mice, it significantly increased the energy expenditure by up-regulating the expression of uncoupling protein 1 (UCP1) in the adipose tissues. Notably, Fuc also improved the obesity-driven dysbiosis of gut microbiota and decreased the relative abundance of the obesity-related intestinal bacteria. However, Fuc was unable to alleviate DIO-induced metabolic disorders in pseudo-sterile mice. Our findings suggested that Fuc might remodel gut microbiota and exert its weight loss and hypolipidemic effects by increasing the energy expenditure, thus providing a novel perspective for treating obesity and related complications.


Asunto(s)
Microbioma Gastrointestinal , Sargassum , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Fucosa/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Polisacáridos , Termogénesis
15.
J Ethnopharmacol ; 295: 115408, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659565

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sargassum fusiforme (Harvey) Setchell, or Haizao, has been used in traditional Chinese medicine (TCM) since at least the eighth century a.d. S. fusiforme is an essential component of several Chinese formulas, including Haizao Yuhu Decoction, used to treat goiter, and Neixiao Lei Li Wan used to treat scrofuloderma. The pharmacological efficacy of S. fusiforme may be related to its anti-inflammatory effect. AIM OF THE STUDY: To determine the structural characteristics of SFF-32, a fucoidan fraction from S. fusiforme, and its antagonistic effect against P-selectin mediated function. MATERIALS AND METHODS: The primary structure of SFF-32 was determined using methylation/GC-MS and NMR analysis. Surface morphology and solution conformation of SFF-32 were determined by scanning electron microscopy (SEM), Congo red test, and circular dichroic (CD) chromatography, respectively. The inhibitory effects of SFF-32 against the binding of P-selectin to HL-60 cells were evaluated using flow cytometry, static adhesion assay, and parallel-plate flow chamber assay. Furthermore, the blocking effect of SFF-32 on the interaction between P-selectin and PSGL-1 was evaluated using an in vitro protein binding assay. RESULTS: The main linkage types of SFF-32 were proven to →[3)-α-l-Fucp-(1→3,4)-α-l-Fucp-(1]2→[4)-ß-d-Manp-(1→3)-d-GlcAp-(1]2→4)-ß-d-Manp-(1→3)-ß-d-Glcp-(1→4)-ß-d-Manp-(1→2,3)-ß-d-Galp-(1→4)-ß-d-Manp-(1→[4)-α-l-Rhap-(1]3→. The sulfated unit or terminal xylose residues were attached to the backbone through the C-3 of some fucose residues and terminal xylose residues were attached to C-3 of galactose residues. Moreover, SFF-32 disrupted P-selectin-mediated cell adhesion and rolling as well as blocked the interaction between P-selectin and its physiological ligand PSGL-1 in a dose-dependent manner. CONCLUSIONS: Blocking the binding between P-selectin and PSGL-1 is the possible underlying mechanism by which SFF-32 inhibits P-selectin-mediated function, which demonstrated that SFF-32 may be a potential anti-inflammatory lead compound.


Asunto(s)
Sargassum , Antiinflamatorios , Humanos , Selectina-P/metabolismo , Polisacáridos/química , Polisacáridos/farmacología , Sargassum/química , Xilosa
16.
Biomed Pharmacother ; 152: 113273, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35709656

RESUMEN

Insulin resistance is a characteristic feature of type 2 diabetes. Sulforaphane (SFN) is a natural antioxidant extracted from the cruciferous vegetables. Recent study reported that SFN exhibits excellent anti-diabetic effects, however, the underlying mechanism is still unclear. This study aimed to investigate the therapeutic effects of SFN on a high-fat diet (HFD)-induced insulin resistance and potential mechanism. SFN was found to effectively reduce body weight, fasting blood glucose and hyperlipidemia, and improve liver function in HFD-fed mice. Furthermore, SFN effectively increased glucose uptake and improved insulin signaling in palmitic acid (PA)-induced HepG2 cells. SFN also led to increased expression of antioxidant genes downstream of Nrf2 and decreased accumulation of lipid peroxides MDA and 4-HNE, both in vivo and in vitro. Further studies revealed that SFN significantly reduced glutathione peroxidase 4 (GPx4) inactivation-mediated oxidative stress by activating the AMPK and Nrf2 signaling pathways. In PA-induced HepG2 cells and flies, the alleviation of insulin resistance by SFN was diminished by GPx4 inhibitor. Taken together, SFN ameliorated HFD-induced insulin resistance by activating the AMPK-Nrf2-GPx4 pathway, providing new insights into SFN as a therapeutic compound for the alleviation of insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Isotiocianatos , Sulfóxidos , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Sulfóxidos/farmacología , Sulfóxidos/uso terapéutico
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121249, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483257

RESUMEN

Dendrobium officinale, often used as a kind of tea for daily drinks, has drawn increasing attention for its beneficial effects. Quality evaluation of D. officinale is of great significance to ensure its health care value and safeguard consumers' interest. Given that traditional analytical methods for assessing D. officinale quality are generally time-consuming and laborious, this study developed a comprehensive strategy, with the advantages of being rapid and efficient, enabling the quality evaluation of D. officinale from different geographical origins using near-infrared (NIR) spectroscopy and chemometrics. As the quality indicators, polysaccharides, polyphenols, total flavonoids, and total alkaloids were quantified. Three types of wavelength selection methods were used for model optimization and these were synergy interval (SI), genetic algorithm (GA), and competitive adaptive reweighted sampling (CARS). From the qualitative perspective, the geographical origins of D. officinale were differentiated by NIR spectroscopy combined with partial least squares-discriminant analysis (PLS-DA) and support vector classification (SVC). The PLS models constructed based on the wavelengths selected by CARS yielded the best performance for prediction of the contents of quality indicators in D. officinale. The root mean square error (RMSEP) and coefficient of determination (Rp2) in the independent test sets were 12.7768 g kg-1 and 0.9586, 1.1346 g kg-1 and 0.9670, 0.3938 g kg-1 and 0.8803, 0.0825 and 0.7031 and for polysaccharides, polyphenols, total flavonoids, and total alkaloids, respectively. As for the origin identification, the nonlinear SVC was superior to the linear PLS-DA, with the correct recognition rates in calibration and prediction sets up to 100% and 100%, respectively. The overall results demonstrated the potential of NIR spectroscopy and chemometrics in the rapid determination of quality parameters and geographical origin. This study could provide a valuable reference for quality evaluation of D. officinale in a more rapid and comprehensive manner.


Asunto(s)
Dendrobium , Espectroscopía Infrarroja Corta , Algoritmos , Quimiometría , Flavonoides , Análisis de los Mínimos Cuadrados , Polifenoles/análisis , Polisacáridos , Espectroscopía Infrarroja Corta/métodos
18.
J Sci Food Agric ; 102(11): 4802-4812, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35229291

RESUMEN

BACKGROUND: Prebiotics, such as algal polysaccharides, can be used to manage metabolic diseases by modulating gut microbiota. However, the effect of Pyropia yezoensis porphyran (PYP), a red algal polysaccharide, on gut microbiota has not been reported. Thus, the objective of this study was to determine effects of PYP on metabolic disorders caused by high sucrose (HS) and underlying mechanisms involved in such effects. RESULTS: Biochemical analysis demonstrated that an HS diet increased triglyceride and circulating sugar contents (metabolic abnormalities) in Drosophila larvae. It also increased the relative abundance of harmful microbiota within the larvae as identified by 16S ribosomal DNA analysis. PYP supplementation at 25 and 50 g kg-1 equivalently reduced metabolic abnormalities in the HS group. Therefore, 25 g kg-1 PYP was selected to investigate its effects on the metabolic pathway and gut microbiota of larvae in the HS group. The activity of PYP in ameliorating metabolic abnormalities by reverse transcription quantitative real-time polymerase chain reaction analysis was consistent with the expression trend of key factors involved in metabolism regulation. PYP reduced the relative abundance of bacteria causing metabolic abnormalities, such as Escherichia-Shigella and Fusobacterium, but increased the relative abundance of beneficial bacteria such as Bacillus and Akkermansia. However, PYP had no effect on triglyceride and circulating sugar contents in HS-fed larvae treated with a mixture of antibiotics designed to remove gut microbiota. CONCLUSION: PYP exhibits anti-metabolic disorder activity by modulating gut microbiota, thereby supporting the development of PYP as a functional prebiotic derived from red algae food. Copyright © 2022 John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Rhodophyta , Animales , Dieta Alta en Grasa , Drosophila melanogaster/genética , Enfermedades Metabólicas/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Polisacáridos/farmacología , Prebióticos , Sefarosa/análogos & derivados , Sacarosa , Triglicéridos
19.
Front Cell Infect Microbiol ; 12: 860559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321314

RESUMEN

Human adenovirus (HAdV) has a worldwide distribution and remains a major pathogen that leads to infections of the respiratory tract. No specific treatments or vaccines are yet available for HAdV infection. Sargassum fusiforme, an edible seaweed, has attracted a lot of attention for its various bioactivities. S. fusiforme has been reported to exhibit antiviral activity. However, research studies about its anti-HAdV activity are few. In this research, we found that S. fusiforme had low cytotoxicity and possessed anti-human adenovirus type 7 (HAdV7) activity in vitro, and the most effective ingredient was alginate. The time of addition assay demonstrated inhibitory effects that were observed in all life stages of the virus. In addition, we observed that the antiviral activity of alginate against HAdV7 infection might be closely related to the endoplasmic reticulum stress (ERS) pathway. Taken together, these results suggest that S. fusiforme extracts have potential application in the prevention and treatment of HAdV infection.


Asunto(s)
Sargassum , Virus , Adenoviridae , Antivirales/metabolismo , Antivirales/farmacología , Humanos , Sargassum/metabolismo
20.
Food Sci Nutr ; 9(10): 5590-5599, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646529

RESUMEN

Lipid accumulation is a major factor in the development of non-alcoholic fatty liver disease (NAFLD). Currently, there is a lack of intervention or therapeutic drugs against NAFLD. In this study, we investigated the ability of Sargassum fusiforme polysaccharide (SFPS) to reduce lipid accumulation induced by high sugar in HepG2 cells and Drosophila melanogaster larvae. The results indicated that SFPS significantly (p < .01) decreased the accumulation of lipid droplets in high sugar-induced HepG2 cells. Furthermore, SFPS also suppressed the expression of Srebp and Fas (genes involved in lipogenesis) and increased the expression of PPARɑ and Cpt1 (genes that participated in fatty acid ß-oxidation) in these cells. SFPS markedly reduced the content of triglyceride of the third instar larvae developed from D. melanogaster eggs reared on the high-sucrose diet. The expression of the Srebp and Fas genes in the larvae was also inhibited whereas the expression of two genes involved in the ß-oxidation of fatty acids, Acox57D-d and Fabp, was increased in the larval fat body (a functional homolog of the human liver). We also found that SFPS ameliorated developmental abnormalities induced by the high-sucrose diet. These results of this study suggest that SFPS could potentially be used as a therapeutic agent for the prevention and treatment of NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA