Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 272: 116473, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718625

RESUMEN

Fibroblast growth factor receptor 2 (FGFR2) represents an appealing therapeutic target for multiple cancers, yet no selective FGFR2 inhibitors have been approved for clinical use to date. Here, we report the discovery of a series of new selective, irreversible FGFR2 inhibitors. The representative compound LHQ490 potently inhibited FGFR2 kinase activity with an IC50 of 5.2 nM, and was >61-, >34-, and >293-fold selective against FGFR1, FGFR3, and FGFR4, respectively. LHQ490 also exhibited high selectivity in a panel of 416 kinases. Cell-based studies revealed that LHQ490 efficiently suppressed the proliferation of BaF3-FGFR2 cells with an IC50 value of 1.4 nM, and displayed >70- and >714-fold selectivity against BaF3-FGFR1 and the parental BaF3 cells, respectively. More importantly, LHQ490 potently suppressed the FGFR2 signaling pathways, selectively inhibited FGFR2-driven cancer cell proliferation, and induced apoptosis of FGFR2-driven cancer cells. Taken together, this study provides a potent and highly selective FGFR2 inhibitor for further development of FGFR2-targeted therapeutic agents.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
2.
Phys Chem Chem Phys ; 21(16): 8508-8516, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30957807

RESUMEN

The adsorption separation of C6-C8 hydrocarbons in metal-organic frameworks (MOFs) has attracted extensive attention worldwide due to its technical feasibility and high energy efficiency in the petroleum industry. In this study, a large-scale computational screening of 13 512 MOFs with topological diversity was carried out to search optimal candidates for the simultaneous separation of two dimethyl butanes (DMB) from the quinary equimolar mixture of hexane isomers. We first screened out 841 MOFs according to their geometrical properties such as pore limited diameter (PLD) and volumetric surface area. Subsequently, high-performing MOFs were ranked out by an evaluation metric of adsorption performance score (APS), that is the product of the adsorption capacity of DMB and the selectivity of DMB over normal and mono-branched hexane isomers (N + M), on the basis of the predicted capacities by the grand canonical Monte Carlo (GCMC) simulations at 10 bar and 433 K. The structure-property relationships were established between APS and MOF descriptors such as density, PLD, etc. Among the screened 841 MOFs, the MOF with highest APS was MOF-163 because it provided an ideal pore topology with the 6.85 Å annular channel to distinguish DMB from the N + M isomers. The breakthrough predictions further demonstrated that the dimensionless residence time of 2,2-dimethylbutane (22DMB) was significantly different from that of n-hexane; this indicated that MOF-163 was a superior candidate for the dynamic separation of hexane isomers. Radial distribution function, adsorption equilibrium configurations and mass center probability density distributions were investigated to elucidate why MOF-163 could differentiate DBM from the N + M isomers. The molecular-level insights proposed in this study will facilitate the development of new MOFs for the separation of hydrocarbons in the petroleum industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...