Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(7): 3560-3571, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340066

RESUMEN

The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.


Asunto(s)
Ascomicetos , Nematodos , Animales , Nematodos/microbiología , Antinematodos/farmacología , Antinematodos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Familia de Multigenes
2.
NPJ Biofilms Microbiomes ; 9(1): 27, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225687

RESUMEN

Tibetan pigs (TPs) can adapt to the extreme environments in the Tibetan plateau implicated by their self-genome signals, but little is known about roles of the gut microbiota in the host adaption. Here, we reconstructed 8210 metagenome-assembled genomes from TPs (n = 65) living in high-altitude and low-altitude captive pigs (87 from China-CPs and 200 from Europe-EPs) that were clustered into 1050 species-level genome bins (SGBs) at the threshold of 95% average nucleotide identity. 73.47% of SGBs represented new species. The gut microbial community structure analysis based on 1,048 SGBs showed that TPs was significantly different from low-altitude captive pigs. TP-associated SGBs enabled to digest multiple complex polysaccharides, including cellulose, hemicellulose, chitin and pectin. Especially, we found TPs showed the most common enrichment of phyla Fibrobacterota and Elusimicrobia, which were involved in the productions of short- and medium-chain fatty acids (acetic acid, butanoate and propanoate; octanomic, decanoic and dodecanoic acids), as well as in the biosynthesis of lactate, 20 essential amino acids, multiple B vitamins (B1, B2, B3, B5, B7 and B9) and cofactors. Unexpectedly, Fibrobacterota solely showed powerful metabolic capacity, including the synthesis of acetic acid, alanine, histidine, arginine, tryptophan, serine, threonine, valine, B2, B5, B9, heme and tetrahydrofolate. These metabolites might contribute to host adaptation to high-altitude, such as energy harvesting and resistance against hypoxia and ultraviolet radiation. This study provides insights into understanding the role of gut microbiome played in mammalian high-altitude adaptation and discovers some potential microbes as probiotics for improving animal health.


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Tibet , Rayos Ultravioleta , Aclimatación , Ácido Acético , Ambientes Extremos , Mamíferos
3.
Sci China Life Sci ; 66(8): 1800-1817, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36949229

RESUMEN

The discovery of biological activities of natural products plays a vital part in drug development. The mechanism by which organisms respond to temperature changes via biosynthesis of natural products remained largely cryptic. A thermophilic fungus under cold stress turned black and accumulated a polyketide metabolite 1 and lipid mass. Deficiency in 1 caused melanin loss and accumulated extra lipid mass, unexpectedly leading to seriously damaged mitochondria diagnostic for ferroptosis. Further analysis revealed that lipid mass induced by cold stress intensively increased ferroptosis risk and 1 functioned as cell wall reinforcer against mass lipid accumulation and as reactive oxygen species scavenger against lipid peroxidation. We also found that melanin in mice lowered lipid level but enhanced animal resistance to cold stress. Treatment with melanin precursors significantly increased mouse cell survival rate under cold stress. Our results unveiled a metabolite-lipid-ferroptosis-cold relationship, which provided mechanistic insights into the functions of most common metabolites and into diseases related to cold stress. These findings opened a perspective for developing anti-cold and anti-ferroptosis therapeutics and agents.


Asunto(s)
Hongos , Melaninas , Ratones , Animales , Temperatura , Especies Reactivas de Oxígeno/metabolismo , Hongos/metabolismo , Lípidos
4.
Heliyon ; 9(2): e13066, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36747564

RESUMEN

Tryptophan and its derived metabolites have been assumed to play important roles in the development and survival of organisms. However, the links of tryptophan and its derived metabolites to temperature change remained largely cryptic. Here we presented that a class of prenyl indole alkaloids biosynthesized from tryptophan dramatically accumulated in thermophilic fungus Thermomyces dupontii under cold stress, in which lipid droplets were also highly accumulated and whose conidiophores were highly build-up. Concurrently, disruption of the key NRPS gene involved in the biosynthesis of prenyl indole alkaloids, resulted in decreased lipid and shrunken mitochondria but enlarged vacuoles. Moreover, the Fe3+ and superoxide levels in ΔNRPS were significantly increased but the reactive oxygen species lipid peroxidation and autophagy levels decreased. Metabolomics study revealed that most enriched metabolites in ΔNRPS were mainly composed of tryptophan degraded metabolites including well known ROS scavenger kynurenamines, and lipid-inhibitors, anthranilic acid and indoleacetic acid, and free radical reaction suppressor free fatty acids. Transcriptomic analysis suggested that the key gene involved in tryptophan metabolism, coinciding with the lipid metabolic processes and ion transports were most up-regulated in ΔNRPS under stress. Our results confirmed a lipid-mediated fungal response to cold stress and unveiled a link of tryptophan-based metabolic reprogramming to the fungal cold adaption.

5.
Microbiol Spectr ; : e0405122, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847492

RESUMEN

Our previous study reported that seminaturally occurring arthrocolins A to C with unprecedented carbon skeletons could restore the antifungal activity of fluconazole against fluconazole-resistant Candida albicans. Here, we showed that arthrocolins synergized with fluconazole, reducing the fluconazole minimum and dramatically augmenting the survivals of 293T human cells and nematode Caenorhabditis elegans infected with fluconazole-resistant C. albicans. Mechanistically, fluconazole can induce fungal membrane permeability to arthrocolins, leading to the intracellular arthrocolins that were critical to the antifungal activity of the combination therapy by inducing abnormal cell membranes and mitochondrial dysfunctions in the fungus. Transcriptomics and reverse transcription-quantitative PCR (qRT-PCR) analysis indicated that the intracellular arthrocolins induced the strongest upregulated genes that were involved in membrane transports while the downregulated genes were responsible for fungal pathogenesis. Moreover, riboflavin metabolism and proteasomes were the most upregulated pathways, which were accompanied by inhibition of protein biosynthesis and increased levels of reactive oxygen species (ROS), lipids, and autophagy. Our results suggested that arthrocolins should be a novel class of synergistic antifungal compounds by inducing mitochondrial dysfunctions in combination with fluconazole and provided a new perspective for the design of new bioactive antifungal compounds with potential pharmacological properties. IMPORTANCE The prevalence of antifungal-resistant Candida albicans, which is a common human fungal pathogen causing life-threatening systemic infections, has become a challenge in the treatment of fungal infections. Arthrocolins are a new type of xanthene obtained from Escherichia coli fed with a key fungal precursor toluquinol. Different from those artificially synthesized xanthenes used as important medications, arthrocolins can synergize with fluconazole against fluconazole-resistant Candida albicans. Fluconazole can induce the fungal permeability of arthrocolins into fungal cells, and then the intracellular arthrocolins exerted detrimental effects on the fungus by inducing fungal mitochondrial dysfunctions, leading to dramatically reduced fungal pathogenicity. Importantly, the combination of arthrocolins and fluconazole are effective against C. albicans in two models, including human cell line 293T and nematode Caenorhabditis elegans. Arthrocolins should be a novel class of antifungal compounds with potential pharmacological properties.

6.
J Fungi (Basel) ; 8(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36547594

RESUMEN

The predominant nematode-trapping fungus Arthrobotrys oligospora harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster AOL_s00215g responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive trap formation, antibacterial activity, and soil colonization. However, the function of one rare gene (AOL_s00215g275 (275)) embedded in the cluster has remained cryptic. Here, we constructed two mutants with the disruption of 275 and the overexpression of 275, respectively, and compared their fungal growth, morphology, resistance to chemical stress, nematicidal activity, transcriptomic and metabolic profiles, and infrastructures, together with binding affinity analysis. Both mutants displayed distinct differences in their TCA cycles, SEC biosynthesis, and endocytosis, combined with abnormal mitochondria, vacuoles, septa formation, and decreased nematicidal activity. Our results suggest that gene 275 might function as a separator and as an integrated gene with multiple potential functions related to three distinct genes encoding the retinoic acid induced-1, cortactin, and vacuolar iron transporter 1 proteins in this nematode-trapping fungus. Our unexpected findings provide insight into the intriguing organization and functions of a rare non-biosynthetic gene in a biosynthetic gene cluster.

7.
Pathogens ; 11(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35890029

RESUMEN

Intrauterine adhesions (IUAs) have caused serious harm to women's reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions. A rat model was used with one side of the duplex uterus undergoing IUA and the other remaining as a non-IUA control. Both 16S rRNA sequencing and metagenome-wide association analysis revealed that instead of Mycoplasmopsis specie in genital tract, murine lung pathogen Mycoplasmopsispulmonis markedly increased in IUA samples and displayed a distinct positive interaction with the host immune system. Moreover, most of the IUA-enriched 58 metabolites positively correlate with M.pulmonis, which inversely correlates with a mitotic progression inhibitor named 3-hydroxycapric acid. A comparison of metabolic profiles of intrauterine flushing fluids from human patients with IUA, endometritis, and fallopian tube obstruction suggested that rat IUA shared much similarity to human IUA. The endometrial gene Tenascin-N, which is responsible for extracellular matrix of wounds, was highly up-regulated, while the key genes encoding parvalbumin, trophectoderm Dkkl1 and telomerase involved in leydig cells, trophectoderm cells, activated T cells and monocytes were dramatically down-regulated in rat IUA endometria. Treatment for rat IUA with estrogen (E2), oxytetracycline (OTC), and a traditional Chinese patent medicine GongXueNing (GXN) did not reduce the incidence of IUA, though inflammatory factor IL-6 was dramatically down-regulated (96-86%) with all three. Instead, in both the E2 and OTC treated groups, IUA became worse with a highly up-regulated B cell receptor signaling pathway, which may be associated with the significantly increased proportions of Ulvibacter or Staphylococcus. Our results suggest an association between intrauterine microbiota alterations, certain uterine metabolites, characteristic changes in endometrial transcription, and IUA and the possibility to intervene in IUA formation by targeting the causal factors, microbial infection, and Tenascin-like proteins.

8.
mSystems ; 7(4): e0151221, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35758593

RESUMEN

The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]). Based on the consistent V4 region of the 16S rRNA gene, beta diversity analysis suggested significantly separated gut microbial communities associated with host backgrounds of seven host groups, but within each group, significant gut microbial divergences were observed, and indicator bacterial genera were identified as associated with aging. We further discovered six common anti-inflammatory gut bacteria (Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia) that had butyrate-producing potentials suggested by pangenomic analysis and that showed similar dynamic changes in at least two selected host groups during aging, independent of distinct host backgrounds. Finally, we found striking age-related changes in 66 plasma metabolites in macaques. Two highly changed metabolites, hydroxyproline and leucine, enriched in adult macaques were significantly and positively correlated with Prevotella and Prevotellamassilia. Furthermore, genus-level pangenome analysis suggested that those six common indicator bacteria can synthesize leucine and arginine as hydroxyproline and proline precursors in both humans and macaques. IMPORTANCE This study provides the first comprehensive investigation of age patterning of gut microbiota of four human populations and three nonhuman primates and found that Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia may be common antiaging microbial markers in both humans and nonhuman primates due to their potential metabolic capabilities for host health benefits. Our results also provide key support for using macaques as animal models in studies of the gut microbiome's role during human aging.


Asunto(s)
Microbioma Gastrointestinal , Animales , Adulto , Humanos , Microbioma Gastrointestinal/genética , Macaca mulatta/genética , ARN Ribosómico 16S/genética , Hidroxiprolina , Leucina
9.
J Agric Food Chem ; 70(20): 6145-6155, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35562189

RESUMEN

Sesquiterpenyl epoxy-cyclohexenoids (SECs) that depend on a polyketide synthase-terpenoid synthase (PKS-TPS) pathway are widely distributed in plant pathogenic fungi. However, the biosynthesis and function of the acetylated SECs still remained cryptic. Here, we identified that AOL_s00215g 273 (273) was responsible for the acetylation of SECs in Arthrobotrys oligospora via the construction of Δ273, in which the acetylated SECs were absent and major antibacterial nonacetylated SECs accumulated. Mutant Δ273 displayed increased trap formation, and nematicidal and antibacterial activities but decreased fungal growth and soil colonization. Glutamine, a key precursor for NH3 as a trap inducer, was highly accumulated, and biologically active phenylpropanoids and antibiotics were highly enriched in Δ273. The decreased endocytosis and increased autophagosomes, with the most upregulated genes involved in maintaining DNA and transcriptional stability and pathways related to coronavirus disease and exosome, suggested that lack of 273 might result in increased virus infection and the acetylation of SECs played a key role in fungal diverse antagonistic ability.


Asunto(s)
Nematodos , Acetilación , Animales , Antibacterianos , Ascomicetos , Endocitosis , Nematodos/microbiología , Virulencia
10.
Front Microbiol ; 12: 649314, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690939

RESUMEN

Knowledge about coronaviruses (CoVs) with furin cleavage sites is extremely limited, although these sites mediate the hydrolysis of glycoproteins in plasma membranes required for MERS-CoV or SARS-CoV-2 to enter cells and infect humans. Thus, we have examined the global epidemiology and evolutionary history of SARS-CoV-2 and 248 other CoVs with 86 diversified furin cleavage sites that have been detected in 24 animal hosts in 28 countries since 1954. Besides MERS-CoV and SARS-CoV-2, two of five other CoVs known to infect humans (HCoV-OC43 and HCoV-HKU1) also have furin cleavage sites. In addition, human enteric coronavirus (HECV-4408) has a furin cleavage site and has been detected in humans (first in Germany in 1988), probably via spillover events from bovine sources. In conclusion, the presence of furin cleavage sites might explain the polytropic nature of SARS-CoV-2- and SARS-CoV-2-like CoVs, which would be helpful for ending the COVID-19 pandemic and preventing outbreaks of novel CoVs.

11.
J Genet Genomics ; 48(9): 803-814, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34238684

RESUMEN

Children are less susceptible to coronavirus disease 2019 (COVID-19), and they have manifested lower morbidity and mortality after infection, for which a multitude of mechanisms may be considered. Whether the normal development of the gut-airway microbiome in children is affected by COVID-19 has not been evaluated. Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the upper respiratory tract and the gut microbiomes in nine children. The alteration of the microbiome is dominated by the genus Pseudomonas, and it sustains for up to 25-58 days in different individuals. Moreover, the patterns of alternation are different between the upper respiratory tract and the gut. Longitudinal investigation shows that the upper respiratory tract and the gut microbiomes are extremely variable among children during the course of COVID-19. The dysbiosis of microbiome persists in 7 of 8 children for at least 19-24 days after discharge from the hospital. Disturbed development of both the gut and the upper respiratory microbiomes and prolonged dysbiosis in these nine children imply possible long-term complications after clinical recovery from COVID-19, such as predisposition to the increased health risk in the post-COVID-19 era.


Asunto(s)
COVID-19/patología , Biología Computacional/métodos , Infecciones del Sistema Respiratorio/microbiología , Disbiosis/microbiología , Disbiosis/patología , Microbioma Gastrointestinal/fisiología , Humanos
12.
NPJ Biofilms Microbiomes ; 7(1): 38, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879801

RESUMEN

Dietary selection and intake affect the survival and health of mammals under extreme environmental conditions. It has been suggested that dietary composition is a key driver of gut microbiota variation; however, how gut microbiota respond to seasonal dietary changes under extreme natural conditions remains poorly understood. Sequencing plant trnL (UAA) region and 16S rRNA gene analysis were employed to determine dietary composition and gut microbiota in freely grazing yaks on the Tibetan plateau. Dietary composition was more diverse in winter than in summer, while Gramineae and Rosaceae were consumed frequently all year. Turnover of seasonal diet and gut microbiota composition occurred consistently. Yaks shifted enterotypes in response to dietary change between warm and cold seasons to best utilize nitrogen and energy, in particular in the harsh cold season. Our findings provide insights into understanding seasonal changes of diet-microbiota linkages in the adaptation of mammals to high altitudes.


Asunto(s)
Aclimatación , Altitud , Alimentación Animal , Microbioma Gastrointestinal , Estaciones del Año , Animales , Biodiversidad , Biomasa , Bovinos , Frío , Redes y Vías Metabólicas , Metagenoma , Metagenómica/métodos
13.
Commun Biol ; 4(1): 240, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603076

RESUMEN

SARS-CoV-2 is the cause of COVID-19. It infects multiple organs including the respiratory tract and gut. Dynamic changes of regional microbiomes in infected adults are largely unknown. Here, we performed longitudinal analyses of throat and anal swabs from 35 COVID-19 and 19 healthy adult controls, as well as 10 non-COVID-19 patients with other diseases, by 16 S rRNA gene sequencing. The results showed a partitioning of the patients into 3-4 categories based on microbial community types (I-IV) in both sites. The bacterial diversity was lower in COVID-19 patients than healthy controls and decreased gradually from community type I to III/IV. Although the dynamic change of microbiome was complex during COVID-19, a synchronous restoration of both the upper respiratory and gut microbiomes from early dysbiosis towards late more diverse status was observed in 6/8 mild COVID-19 adult patients. These findings reveal previously unknown interactions between upper respiratory and gut microbiomes during COVID-19.


Asunto(s)
COVID-19/microbiología , Microbioma Gastrointestinal , Microbiota , Sistema Respiratorio/microbiología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Adulto Joven
14.
Curr Biol ; 30(8): 1578, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32315626
15.
Curr Biol ; 30(7): 1346-1351.e2, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32197085

RESUMEN

An outbreak of coronavirus disease 2019 (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) began in the city of Wuhan in China and has widely spread worldwide. Currently, it is vital to explore potential intermediate hosts of SARS-CoV-2 to control COVID-19 spread. Therefore, we reinvestigated published data from pangolin lung samples from which SARS-CoV-like CoVs were detected by Liu et al. [1]. We found genomic and evolutionary evidence of the occurrence of a SARS-CoV-2-like CoV (named Pangolin-CoV) in dead Malayan pangolins. Pangolin-CoV is 91.02% and 90.55% identical to SARS-CoV-2 and BatCoV RaTG13, respectively, at the whole-genome level. Aside from RaTG13, Pangolin-CoV is the most closely related CoV to SARS-CoV-2. The S1 protein of Pangolin-CoV is much more closely related to SARS-CoV-2 than to RaTG13. Five key amino acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and SARS-CoV-2, but four amino acid mutations are present in RaTG13. Both Pangolin-CoV and RaTG13 lost the putative furin recognition sequence motif at S1/S2 cleavage site that can be observed in the SARS-CoV-2. Conclusively, this study suggests that pangolin species are a natural reservoir of SARS-CoV-2-like CoVs.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Euterios/virología , Neumonía Viral/virología , Secuencia de Aminoácidos , Animales , COVID-19 , Quirópteros , Genoma Viral , Malasia , Pandemias , Filogenia , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...