Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
Medicine (Baltimore) ; 103(23): e38422, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847698

RESUMEN

The purpose of this study is to examine the relationship between fat mass (FM), body fat percentage (BF%), lean body mass (LM), and prostate cancer (PCa), and evaluate their potential impact on the risk of PCa. Data from the National Health and Nutrition Examination Survey (NHANES) of the United States were utilized. Adult male participants from 6 survey cycles between 1999 and 2010 were selected as the study sample. Multivariable logistic regression analysis was conducted to explore the association between BF%, LM, and PCa, while controlling for potential confounding variables. Among the 8440 participants, 359 cases of PCa were diagnosed. The relationship between BF%, LM, and PCa was nonlinear. In the multivariable logistic regression analysis, there was an independent association between BF% and PCa risk (OR: 1.04, 95% CI: 1.02-1.06), suggesting that higher BF% levels are associated with an increased risk of PCa. Conversely, higher LM levels were associated with a decreased risk of PCa (OR: 0.96, 95% CI: 0.95-0.98). The findings of this study demonstrate a correlation between BF% and LM with PCa, but do not provide direct evidence of a causal relationship. Higher BF% levels are associated with an increased risk of PCa, while higher LM levels are associated with a decreased risk. These results provide valuable insights for understanding and potentially preventing PCa, although further research is needed to fully comprehend the underlying mechanisms.


Asunto(s)
Tejido Adiposo , Encuestas Nutricionales , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/etiología , Persona de Mediana Edad , Estados Unidos/epidemiología , Factores de Riesgo , Índice de Masa Corporal , Anciano , Composición Corporal , Adulto , Modelos Logísticos
2.
Int J Biol Macromol ; 273(Pt 1): 133062, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862051

RESUMEN

Chronic bacterial infections, excessive inflammation, and oxidative stress significantly hinder diabetic wound healing by prolonging the inflammatory phase and complicating the healing process. In this study, phenylboronic acid functionalized dextran (PODP) was developed to encapsulate curcumin, referred to as PODP@Cur. Experimental results indicate that PODP significantly improves the water solubility of curcumin and exhibits synergistic biological activity both in vitro and in vivo. PODP@Cur is capable of accelerating drug release under the pathological microenvironment with ROS accumulation. Furthermore, phenylboronic acid (PBA) has demonstrated potential for targeted bacterial drug delivery, enhancing antibacterial efficacy and trapping free LPS/PGN from dead bacteria to reduce undesirable inflammation. In a diabetic mouse model, PODP@Cur exhibits an excellent antibacterial, anti-inflammatory and antioxidant activities to ultimately promote the efficient and safe wound healing. Due to the specific interaction between PBA and LPS, PODP@Cur could enhance antibacterial activity against bacteria, reduce toxic side effects on normal cells, and alleviate the LPS-mediated pro-inflammatory pathological microenvironment. Therefore, PODP@Cur is capable of being exploited as an efficient and safe candidate for promoting the bacteria-infected diabetic wound healing.

3.
Int J Biol Macromol ; 273(Pt 1): 132962, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38848827

RESUMEN

The preparation of natural polymer-based highly conductive hydrogels with reliable durability for applications in supercapacitors (SCs) is still challenging. Herein, a facile method to prepare alkaline lignin (AL)-based polypyrrole (PPy)-rich, high-conductive PPy@AL/PEGDGE gel was reported, where AL was used as a dopant, polyethylene glycol diglycidyl ether (PEGDGE) as a cross-linking agent, and PPy as a conducting polymer. The PPy@AL/PEGDGE gel electrode materials with hollow structures were prepared by electrochemical deposition and chemical etching method and then assembled into sandwich-shaped SCs. Cyclic voltammetry (CV), galvanotactic charge discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycling stability tests of the PPy@AL/PEGDGE SCs were performed. The results demonstrated that the SCs can achieve a conductivity of 25.9 S·m-1 and a specific capacitance of 175 F·g-1, which was 127.4 % higher compared to pure PPy (77 F·g-1) electrode. The highest energy density and power density for the SCs were obtained at 23.06 Wh·kg-1 and 5376 W·kg-1, respectively. In addition, the cycling performance was also higher than that of pure PPy assembled SCs (50 %), and the capacitance retention rate can reach 72.3 % after 1000 cycles. The electrode materials are expected to be used as sensor and SCs devices.

4.
Orthop Surg ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925614

RESUMEN

BACKGROUND: While sciatic nerve injury has been described as a complication of acetabular fractures, iatrogenic nerve injury remains sparsely reported. This study aims to assess iatrogenic sciatic nerve injuries occurring during acetabular fracture surgery, tracking their neurological recovery and clinical outcomes, and investigating any correlation between recovery and the severity of neurologic injury to facilitate physicians in providing prediction of prognosis. CASE PRESENTATION: We present two cases of male patients, aged 56 and 22, who developed sciatic palsy due to iatrogenic nerve injury during acetabular fracture surgery. Iatrogenic sciatic nerve injury resulted from operatively treated acetabular fractures. Surgical exploration, involving internal fixation removal and nerve decompression, successfully alleviated symptoms in both cases postoperatively. At the latest follow-up, one patient achieved full recovery with excellent function, while the other exhibited residual deficits at the L5/S1 root level along with minimal pain. CONCLUSION: Sciatic nerve injury likely stemmed from reduction techniques and internal fixation procedures for the posterior column, particularly when performed with the hip flexed, thereby placing tension on the sciatic nerve. Our case reports underscore the significance of liberal utilization of electrophysiologic examinations and intraoperative monitoring for the prediction of prognosis. Surgical exploration, encompassing internal fixation removal and nerve decompression, represents an effective intervention for resolving sciatic palsy, encompassing both sensory neuropathy and motor symptoms.

5.
ACS Appl Mater Interfaces ; 16(25): 32027-32044, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38867426

RESUMEN

Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. ß-Cyclodextrin (ß-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. ß-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.


Asunto(s)
Aterosclerosis , Materiales Biomiméticos , Colesterol , Dopamina , Macrófagos , Metotrexato , Nanopartículas , Dopamina/química , Dopamina/farmacología , Nanopartículas/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Metotrexato/química , Metotrexato/farmacología , Colesterol/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Ciclodextrinas/química , Ciclodextrinas/farmacología , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Portadores de Fármacos/química , beta-Ciclodextrinas
6.
Small ; : e2402752, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822717

RESUMEN

Surface modification of Cu current collectors (CCs) is proven to be an effective method for protecting lithium metal anodes. However, few studies have focused on the quality and efficiency of modification layers. Herein, a novel home-made filtered cathode vacuum arc (FCVA) co-deposition system with high modification efficiency, good repeatability and environmental friendliness is proposed to realize the wide range regulation of film composition, structure and performance. Through this system, ZnMgTiAl quaternary alloy films, which have good affinity with Li are successfully constructed on Cu CCs, and the fully enhanced electrochemical performances are achieved. Symmetrical cells constructed with modified CCs maintained a fairly low voltage hysteresis of only 13 mV after 2100 h at a current density of 1 mA cm-2. In addition, the capacity retention rate is as high as 75.0% after 100 cycles in the full cells. The influence of alloy films on the dynamic evolution process of constructing stable artificial solid electrolyte interphase (SEI) layer is revealed by in situ infrared (IR) spectroscopy. This work provides a promising route for designing various feasible modification films for LMBs, and it displays better industrial application prospects than the traditional chemical methods owing to the remarkable controllability and scale-up capacity.

7.
Acta Biomater ; 181: 375-390, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38734284

RESUMEN

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Placa Aterosclerótica , Especies Reactivas de Oxígeno , Placa Aterosclerótica/diagnóstico por imagen , Animales , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Colorantes Fluorescentes/química , Ratones , Imagen Óptica/métodos , Ácido Hialurónico/química , Lípidos/química , Humanos , Células RAW 264.7
8.
Int J Biol Macromol ; 270(Pt 2): 132387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759850

RESUMEN

Alginate (SA) comprises repeating unis of ß-1, 4 linked ß-D-mannuronic acid (M) and α-L-guloronic acid (G) in varying proportions. The M/G ratio greatly impacts its anti-inflammatory properties in tissue healing wound, as less knowledge reported. This study examined the performances of both SA and SA hydrogel crosslinked with copper ions (SA-Cu) with different M/G ratios are studied. SA with higher M/G ratios stimulated macrophage migration and shifted from M0 to the pro-inflammatory Ml phenotype, while lower M/G ratios shifted from M1 to the pro-repair M2 phenotype. Furthermore, SA-Cu hydrogels with lower M/G ratios exhibited enhanced cross-linking degree, mechanical and rheological properties, as well Cu releasing rate. The reason may be attributed to a relative easy binding between Cu ions and G unit among Cu ions, M unit and G unit. In vitro cell evaluation showed that SA-Cu hydrogel with M/G ratio of 1:1 activated M2 macrophages and up-regulated anti-inflammatory cytokines expression more effectively than those of SA-Cu ratios (2:1) and (1:2). In vivo, SA-Cu hydrogel with M/G ratio of 1:1 expedited diabetic wound healing, accelerating infiltration and phenotype shift of M2 macrophages, and enhancing anti-inflammatory factors, epithelialization and collagen deposition in healing phases. This research highlights the significant role of M/G ratios in SA materials in influencing macrophage behavior and inflammatory responses, which would benefit its application field.


Asunto(s)
Alginatos , Hidrogeles , Macrófagos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Alginatos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Animales , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Células RAW 264.7 , Diabetes Mellitus Experimental , Citocinas/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/farmacología , Cobre/química , Ratas , Masculino , Polaridad Celular/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos
9.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715444

RESUMEN

MOTIVATION: Exploring potential associations between diseases can help in understanding pathological mechanisms of diseases and facilitating the discovery of candidate biomarkers and drug targets, thereby promoting disease diagnosis and treatment. Some computational methods have been proposed for measuring disease similarity. However, these methods describe diseases without considering their latent multi-molecule regulation and valuable supervision signal, resulting in limited biological interpretability and efficiency to capture association patterns. RESULTS: In this study, we propose a new computational method named DiSMVC. Different from existing predictors, DiSMVC designs a supervised graph collaborative framework to measure disease similarity. Multiple bio-entity associations related to genes and miRNAs are integrated via cross-view graph contrastive learning to extract informative disease representation, and then association pattern joint learning is implemented to compute disease similarity by incorporating phenotype-annotated disease associations. The experimental results show that DiSMVC can draw discriminative characteristics for disease pairs, and outperform other state-of-the-art methods. As a result, DiSMVC is a promising method for predicting disease associations with molecular interpretability. AVAILABILITY AND IMPLEMENTATION: Datasets and source codes are available at https://github.com/Biohang/DiSMVC.


Asunto(s)
Biología Computacional , Humanos , Biología Computacional/métodos , Enfermedad , Algoritmos , MicroARNs/genética , Programas Informáticos , Aprendizaje Automático
10.
Nat Commun ; 15(1): 4012, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740774

RESUMEN

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.


Asunto(s)
Nucleótidos Cíclicos , Nucleotidiltransferasas , Animales , Humanos , Ratones , Dominio Catalítico , Cristalografía por Rayos X , ADN , Modelos Moleculares , Nucleótidos Cíclicos/genética , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Especificidad por Sustrato
11.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786673

RESUMEN

Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans.

12.
Cancer Med ; 13(9): e7229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698688

RESUMEN

AIM: To investigate the relationship between chemoresistance in pancreatic cancer patients receiving postoperative gemcitabine adjuvant therapy and specific clinical/pathological characteristics, as well as its impact on patient prognosis. METHODS: From June 2018 to June 2021, clinical and pathological data of 148 pancreatic cancer patients were collected, and 101 patients were followed up for tumor recurrence/metastasis and survival status. The correlation between chemoresistance and specific clinical/pathological characteristics or patient prognosis was retrospectively analyzed. RESULTS: Of the 148 patients, 78 were in the chemoresistance group and 70 in the non-chemoresistance group. Univariate analysis showed that the development of chemoresistance may be related to patient age, combined diabetes, preoperative CA19-9 level, tumor size, AJCC stage, vascular invasion, and positive lymph node ratio. Furthermore, subsequent multivariate analysis incorporating these variables indicated that tumor size may be a key factor influencing chemoresistance (p < 0.001, OR = 1.584). Log-rank test showed patients in the chemoresistance group had worse overall survival (OS) (HR = 2.102, p = 0.018) and progression free survival (PFS) (HR = 3.208, p = 0.002) than patients in the non-chemoresistance group; and patients with smaller size tumors (diameter ≤3 cm) had significantly better OS (HR = 2.923, p < 0.001) and PFS (HR = 2.930, p = 0.003) than those with larger size tumors (diameter >3 cm). CONCLUSIONS: Patients with pancreatic cancer receiving postoperative gemcitabine adjuvant therapy are more likely to develop chemoresistance when their tumor sizes are larger (diameter >3 cm). Development of chemoresistance exacerbates the prognosis of patients with pancreatic cancer, and larger tumor size is also a risk factor for poor prognosis in these patients.


Asunto(s)
Antimetabolitos Antineoplásicos , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/cirugía , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Masculino , Femenino , Quimioterapia Adyuvante/métodos , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Anciano , Antimetabolitos Antineoplásicos/uso terapéutico , Adulto , Recurrencia Local de Neoplasia
13.
Soft Robot ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683643

RESUMEN

Abstract Active control of the shape of soft robots is challenging. Despite having an infinite number of passive degrees of freedom (DOFs), soft robots typically only have a few actively controllable DOFs, limited by the number of degrees of actuation (DOAs). The complexity of actuators restricts the number of DOAs that can be incorporated into soft robots. Active shape control is further complicated by the buckling of soft robots under compressive forces; this is particularly challenging for compliant continuum robots due to their long aspect ratios. In this study, we show how variable stiffness enables shape control of soft robots by addressing these challenges. Dynamically changing the stiffness of sections along a compliant continuum robot selectively "activates" discrete joints. By changing which joints are activated, the output of a single actuator can be reconfigured to actively control many different joints, thus decoupling the number of controllable DOFs from the number of DOAs. We demonstrate embedded positive pressure layer jamming as a simple method for stiffness change in inflated beam robots, its compatibility with growing robots, and its use as an "activating" technology. We experimentally characterize the stiffness change in a growing inflated beam robot and present finite element models that serve as guides for robot design and fabrication. We fabricate a multisegment everting inflated beam robot and demonstrate how stiffness change is compatible with growth through tip eversion, enables an increase in workspace, and achieves new actuation patterns not possible without stiffening.

14.
J Control Release ; 369: 722-733, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583575

RESUMEN

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Glioma , Ratones Desnudos , Péptidos , Animales , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/farmacocinética , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Péptidos/química , Péptidos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Proteínas de Choque Térmico/metabolismo , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Receptores de Dopamina D2/metabolismo , Ratones , Masculino
15.
Viruses ; 16(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675931

RESUMEN

Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.


Asunto(s)
Lagos , Virus , Lagos/virología , China , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación , Ecosistema , Viroma , Filogenia
16.
Adv Healthc Mater ; : e2401113, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686849

RESUMEN

Atherosclerosis (AS) management typically relies on therapeutic drug interventions, but these strategies typically have drawbacks, including poor site specificity, high systemic intake, and undesired side effects. The field of cell membrane camouflaged biomimetic nanomedicine offers the potential to address these challenges thanks to its ability to mimic the natural properties of cell membranes that enable enhanced biocompatibility, prolonged blood circulation, targeted drug delivery, and evasion of immune recognition, ultimately leading to improved therapeutic outcomes and reduced side effects. In this study, a novel biomimetic approach is developed to construct the M1 macrophage membrane-coated nanoprodrug (MM@CD-PBA-RVT) for AS management. The advanced MM@CD-PBA-RVT nanotherapeutics are proved to be effective in inhibiting macrophage phagocytosis and facilitating the cargo delivery to the activated endothelial cells of AS lesion both in vitro and in vivo. Over the 30-day period of nanotherapy, MM@CD-PBA-RVT is capable of significantly inhibiting the progression of AS, while also maintaining a favorable safety profile. In conclusion, the biomimetic MM@CD-PBA-RVT shows promise as feasible drug delivery systems for safe and effective anti-AS applications.

17.
Environ Geochem Health ; 46(4): 117, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478119

RESUMEN

Continuous exposure to airborne pesticides causes their gradual accumulation in the human body, eventually posing a threat to human health. To the best of our knowledge, risk assessment study of pesticide non-occupational exposure to residents in agricultural areas has not been conducted in China. In this study, air samples (gas and dust) were collected from inside and outside residences of seven households and an area near the field in a grain-growing area (wheat and maize rotation) for eight months, and the pesticides present were examined both qualitatively and quantitatively. Using a 95% confidence interval, 9 out of 16 pesticides were detected, namely acetamiprid, acetochlor, atrazine, flucarbazone-sodium, imidacloprid, methyldisulfuron-methyl, nicosulfuron-methyl, pendimethalin, and beta-cyhalothrin, and their safety was subsequently evaluated. The results showed that the inhalation exposure of households to beta-cyhalothrin exceeded the acceptable range in the first residential, and the excess lifetime cancer risk of acetochlor inhalation exposure in six households and area around the field exceeds 1E-6, which highlights the need to strengthen preventive screening for cancer risk.


Asunto(s)
Neoplasias , Nitrilos , Plaguicidas , Piretrinas , Toluidinas , Humanos , Plaguicidas/toxicidad , Plaguicidas/análisis , Exposición a Riesgos Ambientales/análisis , Medición de Riesgo
18.
Opt Express ; 32(4): 6409-6422, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439344

RESUMEN

In this paper, a novel laser spot tracking algorithm that incorporates the Kalman filter with the continuously adaptive Meanshift algorithm (Cam-Kalm) is proposed and employed in an underwater optical wireless communication (UOWC) system. Since the Kalman filter has the advantage of predicting the state information of the target spot based on its spatial motion features, the proposed algorithm can improve the accuracy and stability of the moving laser spot tracking. A 2 m optical wireless communication experimental system with auto-tracking based on a green laser diode (LD) is built to evaluate the tracking performance of different algorithms. Experimental results verify that the proposed algorithm outperforms conventional tracking algorithms in aspects of tracking accuracy, interference resistance, and response time. With the proposed Cam-Kalm algorithm, the experimental system can establish an effective communication link, while the maximum tracking speed is 20 mm/s given the forward-error-correction (FEC) threshold.

19.
J Colloid Interface Sci ; 665: 232-239, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522162

RESUMEN

The self-assembled aerogels are considered as an efficient strategy to address the aggregation and restacking of Ti3C2Tx MXene nanosheets for high-performance supercapacitors. However, the low mechanical strength of the MXene aerogel results in the structural collapse of the self-standing supercapacitor electrode materials. Herein, a low-cost melamine sponge (MS) absorbed different cations (H+, K+, Mg2+, Fe2+, Co2+, Ni2+ and Al3+), serves as a carrier and crosslinker for loading MXene hydrogel induced by the absorbed cations on the skeleton surface and the pores of MS, resulting in the high loading mass MXene aerogels with high mechanical strength. The experimental results show that the Mg-Ti3C2Tx@MS aerogel exhibits the maximum area capacitance of 702.22 mF cm-2 at 3 mA cm-2, and the area capacitance is still 603.12 mF cm-2 even at 100 mA cm-2, indicating the high rate capability with a capacitance retention of 85.89 %. It is worth noting that the constructed asymmetric supercapacitor with activated carbon achieves high energy densities of 104.53 µWh cm-2 and 93.87 µWh cm-2 at 800 µW cm-2 and 7999 µW cm-2, respectively. Furthermore, the asymmetric supercapacitor shows the high cycling stability with 90.2 % capacity retention after 10,000 cycles. This work provides a feasible strategy to prepare Ti3C2Tx MXene aerogels with large layer spacing and high strength for high-performance supercapacitors.

20.
Foods ; 13(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38472877

RESUMEN

Microplastics have been an emerging threat to filtering species and the ingestion and impacts of microplastics on oysters are a cause for concern. However, much remains unknown about the effects of microplastics on flavor-related biomarkers in oysters. Herein, a laboratory microplastic exposure with concentrations of 1, 10, and 100 mg/L for 15 days was performed to investigate the impacts of microplastics on the flavor parameters of oysters. Exposure to microplastics changed the odor characteristics of oysters. Microplastic exposure had minor effects on the fatty acid composition; however, significant alterations in free amino acids and nucleotides were observed under the 1 and 10 mg/L exposure groups, respectively. The overall results indicated 10 mg/L of microplastic exposure significantly increased the equivalent umami value of oysters. These findings stressed the effects of microplastics on oysters and would be an important reference for the assessment of the potential risks associated with microplastics in marine edible species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...