Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206681

RESUMEN

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Asunto(s)
Glicopéptidos , Espectrometría de Masas en Tándem , Glicopéptidos/análisis , Espectrometría de Masas en Tándem/métodos , Electrones , Péptidos/química , Polisacáridos/química
2.
Int J Biol Macromol ; 261(Pt 2): 129709, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286380

RESUMEN

The dried root of Pueraria mirifica (P. mirifica) is an edible foodstuff widely used in Asian countries. P. mirifica is known for its high starch content. The isolation of polysaccharides from high-starch plant parts is challenging due to the interference of starch. Therefore, this study aimed to develop a technique for isolating and investigating the structure and activity of non-glucan polysaccharides from P. mirifica (PMP). An effective starch removal process was developed using α-amylase hydrolysis and thorough membrane dialysis. Four non-glucan polysaccharides were isolated, and PMP-2 was subjected to structural elucidation. The results indicated that PMP-2 has a molecular weight of 124.4 kDa and that arabinose and galactose are the main components, accounting for 27.8 % and 58.5 %, respectively. Methylation and NMR analysis suggested that PMP-2 is an Arabinogalactan composed of 1,6-linked Galp and 1,4-linked Galp as the main chain, with arabinan and rhamnose as side chains. Furthermore, PMP-C and PMP-2 exhibited concentration-dependent antioxidant activities against DPPH, ABTS, and hydroxyl radicals and certain immunomodulatory activities related to the release of NO, TNF-α and IL-6. These findings suggest that PMP-2 has potential therapeutically active ingredient in functional foods. The developed method successfully removed starch and isolated non-glucan polysaccharides from the high-starch content plant P. mirifica and can be applied to other high-starch plants.


Asunto(s)
Pueraria , Pueraria/química , Almidón , Diálisis Renal , Extractos Vegetales , Antioxidantes , Polisacáridos/farmacología
3.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629680

RESUMEN

Licorice is known as "Gan-Cao" in traditional Chinese Medicine (TCM), belonging to the genus Glycyrrhiza (Family: Fabaceae/Leguminosae). It has a long medicinal history and wide applications in China. Polysaccharides of licorice (LPs) are one of the key bioactive components. As herbal polysaccharides attracted increasing interest in the past several decades, their extraction, isolation, structural characterization, pharmacological activities, and medicinal application have been explored extensively. It is worth heeding that the method of extraction and purification effects LPs, apart from specie and origin specificity. This review evaluates the method of extraction and purification and demonstrates its performance in gaining specific composition and its structure-activity relationship, which might lead the readers to a fresh horizon for developing advanced treatment strategies. It is recently reported that the conformation of LPs plays a vital role as biopolymers, such as selenized modification, microencapsulation, nanocomposite, liposome formulation, drug/hydrogel combinations, biosensor device, and synergistic effect with a vaccine. In addition, LPs showed a good thermodynamics profile, as these properties enable them to interact with additional supramolecular interaction by chemical modifications or copolymerization. Functional polymers that are responsive to various external stimuli, such as physical, chemical, and biological signals, are a promising study topic. Thus, LPs are emerging as a new biomaterial that can enhance intended formulation along exerting its inherent medicinal effects. It is hoped that this review will provide a basis for the utilization and further developments of licorice polysaccharides in the vast medium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...