Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
FASEB J ; 38(10): e23646, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38795328

RESUMEN

Multiple regulatory mechanisms are in place to ensure the normal processes of bone metabolism, encompassing both bone formation and absorption. This study has identified chaperone-mediated autophagy (CMA) as a critical regulator that safeguards bone formation from the detrimental effects of excessive inflammation. By silencing LAMP2A or HSCA8, we observed a hindrance in the osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro. To further elucidate the role of LAMP2A, we generated LAMP2A gene knockdown and overexpression of mouse BMSCs (mBMSCs) using adenovirus. Our results showed that LAMP2A knockdown led to a decrease in osteogenic-specific proteins, while LAMP2A overexpression favored the osteogenesis of mBMSCs. Notably, active-ß-catenin levels were upregulated by LAMP2A overexpression. Furthermore, we found that LAMP2A overexpression effectively protected the osteogenesis of mBMSCs from TNF-α, through the PI3K/AKT/GSK3ß/ß-catenin pathway. Additionally, LAMP2A overexpression significantly inhibited osteoclast hyperactivity induced by TNF-α. Finally, in a murine bone defect model, we demonstrated that controlled release of LAMP2A overexpression adenovirus by alginate sodium capsule efficiently protected bone healing from inflammation, as confirmed by imaging and histological analyses. Collectively, our findings suggest that enhancing CMA has the potential to safeguard bone formation while mitigating hyperactivity in bone absorption.


Asunto(s)
Autofagia Mediada por Chaperones , Glucógeno Sintasa Quinasa 3 beta , Inflamación , Proteína 2 de la Membrana Asociada a los Lisosomas , Células Madre Mesenquimatosas , Osteogénesis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , beta Catenina , Animales , Osteogénesis/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Inflamación/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Transducción de Señal , Masculino , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Diferenciación Celular , Osteoclastos/metabolismo
2.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672926

RESUMEN

Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.

3.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674836

RESUMEN

This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.


Asunto(s)
Cafeína , Cápsulas , Fuerza Muscular , Resistencia Física , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Cafeína/administración & dosificación , Cafeína/farmacología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Resistencia Física/efectos de los fármacos
4.
Food Funct ; 15(6): 3122-3129, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38426554

RESUMEN

Little is known regarding the effects of xylooligosaccharides (XOS) on insulin resistance (IR) in gestational diabetes mellitus (GDM). We aimed to investigate this issue and its mechanism. Sixty female mice were randomly allotted to 4 groups (n = 15): control, high fat diet (HFD), GDM, and GDM + XOS. The control mice were fed an AIN-93 diet, while the mice in the other groups were fed 45% HFD. After pregnancy, mice in GDM and GDM + XOS groups were intraperitoneally injected with 30 mg kg-1 streptozocin for 3 days from the first day of pregnancy. Mice in the GDM + XOS group were then fed an HFD containing 2% XOS. Fasting glucose and insulin levels were monitored. The fecal Akkermansia muciniphila (Akk. muciniphila) and Bifidobacterium were measured by qPCR. The Chiu scores were calculated from hematoxylin-eosin (HE)-stained ileal tissues. Phosphorylated Akt in the liver and occludin and ZO-1 in the intestinal tissues were determined by western blotting. XOS reduced (p < 0.05) fasting blood glucose and insulin and HOMA-IR, and increased (p < 0.05) Akt phosphorylation in the livers of GDM mice. Moreover, XOS decreased (p < 0.05) TNFα, IL-1ß, IL-15 and LPS in the serum, increased (p < 0.05) fecal Akk. muciniphila abundance, lowered (p < 0.05) Chiu's scores, and enhanced (p < 0.05) occludin and ZO-1 expression. XOS ameliorate IR by increasing Akk. muciniphila and improving intestinal barrier dysfunction in GDM mice.


Asunto(s)
Diabetes Gestacional , Enfermedades Gastrointestinales , Glucuronatos , Resistencia a la Insulina , Enfermedades Intestinales , Oligosacáridos , Embarazo , Humanos , Femenino , Animales , Ratones , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ocludina , Insulina , Akkermansia
5.
ACS Omega ; 9(10): 11347-11355, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496927

RESUMEN

The identification of active components is critical for the development of sports supplements. However, high-throughput screening of active components remains a challenge. This study sought to construct prediction models to screen active components from herbal medicines via machine learning and validate the screening by using cell-based assays. The six constructed models had an accuracy of >0.88. Twelve randomly selected active components from the screening were tested for their active potency on C2C12 cells, and 11 components induced a significant increase in myotube diameters and protein synthesis. The effect and mechanism of luteolin among the 11 active components as potential sports supplements were then investigated by using immunofluorescence staining and high-content imaging analysis. It showed that luteolin increased the skeletal muscle performance via the activation of PGC-1α and MAPK signaling pathways. Thus, high-throughput prediction models can be effectively used to screen active components as sports supplements.

6.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215666

RESUMEN

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Asunto(s)
Lantano , Osteopontina , Humanos , Osteopontina/metabolismo , Lantano/toxicidad , Lantano/metabolismo , Riñón , Túbulos Renales/metabolismo , Biomarcadores/metabolismo
7.
Environ Toxicol ; 39(1): 435-443, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792543

RESUMEN

Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-ß (TGF-ß1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-ß1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.


Asunto(s)
Cadherinas , Transición Epitelial-Mesenquimal , Fibrosis Pulmonar , Animales , Ratones , Bleomicina/toxicidad , Cadherinas/metabolismo , Fibroblastos/metabolismo , Pulmón , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
8.
iScience ; 26(10): 107972, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829202

RESUMEN

The purpose of the present study was to examine the effects of 6 weeks of 40-, 60-, or 80-cm drop jump (DJ) training on lower limb explosive and change of direction (CoD) performance in collegiate Sanda athletes. Repeated-measure ANOVA revealed that there was a significant group × time interaction for standing long jump test (p = 0.006), counter movement jump test (p = 0.026), Illinois agility test (p = 0.003), square test (p = 0.018), Nebraska test (p = 0.027), t test (p = 0.032), and hexagon test (p = 0.012) due to the best performance observed at post-test compared with pre-test for DJ60 (effect size = 0.89-2.89), and the improvement was higher than that of the other groups. These findings suggest that 6 weeks of DJ training could improve the lower limb explosive and CoD performance in collegiate Sanda athletes and that 60 cm may be the optimal drop height.

9.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803636

RESUMEN

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Asunto(s)
Curcumina , Salmo salar , Animales , Conservación de Alimentos/métodos , Almacenamiento de Alimentos , Curcumina/farmacología , Curcumina/metabolismo , Alimentos Marinos/análisis , Bacterias/metabolismo
10.
Compr Rev Food Sci Food Saf ; 22(5): 3814-3846, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530552

RESUMEN

The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.


Asunto(s)
Fármacos Fotosensibilizantes , Plancton , Fármacos Fotosensibilizantes/farmacología , Bacterias , Hongos , Biopelículas
11.
Adv Sci (Weinh) ; 10(26): e2301833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395375

RESUMEN

Cartilage damage affects millions of people worldwide. Tissue engineering strategies hold the promise to provide off-the-shelf cartilage analogs for tissue transplantation in cartilage repair. However, current strategies hardly generate sufficient grafts, as tissues cannot maintain size growth and cartilaginous phenotypes simultaneously. Herein, a step-wise strategy is developed for fabricating expandable human macromass cartilage (macro-cartilage) in a 3D condition by employing human polydactyly chondrocytes and a screen-defined serum-free customized culture (CC). CC-induced chondrocytes demonstrate improved cell plasticity, expressing chondrogenic biomarkers after a 14.59-times expansion. Crucially, CC-chondrocytes form large-size cartilage tissues with average diameters of 3.25 ± 0.05 mm, exhibiting abundant homogenous matrix and intact structure without a necrotic core. Compared with typical culture, the cell yield in CC increases 2.57 times, and the expression of cartilage marker collagen type II increases 4.70 times. Transcriptomics reveal that this step-wise culture drives a proliferation-to-differentiation process through an intermediate plastic stage, and CC-chondrocytes undergo a chondral lineage-specific differentiation with an activated metabolism. Animal studies show that CC macro-cartilage maintains a hyaline-like cartilage phenotype in vivo and significantly promotes the healing of large cartilage defects. Overall, an efficient expansion of human macro-cartilage with superior regenerative plasticity is achieved, providing a promising strategy for joint regeneration.


Asunto(s)
Cartílago Articular , Animales , Humanos , Cartílago Articular/metabolismo , Condrocitos/trasplante , Ingeniería de Tejidos , Diferenciación Celular , Regeneración
12.
Oral Dis ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455416

RESUMEN

OBJECTIVE: This study investigated the spinal changes in ligature-induced periodontitis and the role of periodontitis in cognitive impairment. METHODS: Twenty mice were randomized into the control and chronic periodontitis (CP) groups, with the latter receiving ligature-induced periodontitis. Cognitive performance was assessed by fear conditioning test. Periodontal inflammation and alveolar bone resorption were evaluated by micro-computed tomography and histopathology. The hippocampal microglial activation was evaluated by immunohistochemistry (IHC). The expressions of hippocampal cytokines (TNF-α, iNOS, IL-1ß, IL-4, IL-10, and TREM2) were measured by reverse transcription-polymerase chain reaction. The morphology and density of the dendritic spines were determined by Golgi-Cox staining. RESULTS: The CP mice reported significant inflammatory cell infiltration and alveolar bone resorption, with marked increases in cytokine levels (TNF-α, iNOS, IL-1ß, and TREM2) in the brain. Moreover, the CP mice showed significantly reduced freezing to the conditioned stimulus in the cued and contextual tests, indicating impaired memory. Further analyses revealed, in the hippocampus of the CP mice, enhanced microglial activation, decreased dendritic spine density, and increased proportion of thin dendritic spines. CONCLUSIONS: Periodontitis-induced neuroinflammation may impair the cognitive function by activating hippocampal microglia and inducing dendritic spine immaturity.

13.
PLoS One ; 18(7): e0288631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450501

RESUMEN

In this review, we assessed the diagnostic efficiency of artificial intelligence (AI) models in detecting temporomandibular joint osteoarthritis (TMJOA) using radiographic imaging data. Based upon the PRISMA guidelines, a systematic review of studies published between January 2010 and January 2023 was conducted using PubMed, Web of Science, Scopus, and Embase. Articles on the accuracy of AI to detect TMJOA or degenerative changes by radiographic imaging were selected. The characteristics and diagnostic information of each article were extracted. The quality of studies was assessed by the QUADAS-2 tool. Pooled data for sensitivity, specificity, and summary receiver operating characteristic curve (SROC) were calculated. Of 513 records identified through a database search, six met the inclusion criteria and were collected. The pooled sensitivity, specificity, and area under the curve (AUC) were 80%, 90%, and 92%, respectively. Substantial heterogeneity between AI models mainly arose from imaging modality, ethnicity, sex, techniques of AI, and sample size. This article confirmed AI models have enormous potential for diagnosing TMJOA automatically through radiographic imaging. Therefore, AI models appear to have enormous potential to diagnose TMJOA automatically using radiographic images. However, further studies are needed to evaluate AI more thoroughly.


Asunto(s)
Inteligencia Artificial , Osteoartritis , Humanos , Curva ROC , Articulación Temporomandibular/diagnóstico por imagen , Osteoartritis/diagnóstico por imagen , Pruebas Diagnósticas de Rutina
14.
J Stomatol Oral Maxillofac Surg ; 124(6): 101469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37061039

RESUMEN

For immediate implants in the anterior region, the socket-shield technique has received much attention in recent years. However, this technique is technically sensitive and root preparation is difficult. It is also difficult to obtain the ideal three-dimensional position for implant placement in the anterior region. This paper reports a clinical case in which socket-shield preparation and implant cavity preparation were performed with the aid of a dual guide in implant surgery. The dual guide surgical preparation technique was used to reduce the difficulty of socket-shield preparation and to achieve restoration-orientated implant placement with satisfactory clinical results.


Asunto(s)
Implantes Dentales de Diente Único , Carga Inmediata del Implante Dental , Humanos , Alveolo Dental/cirugía , Estética Dental , Carga Inmediata del Implante Dental/métodos , Extracción Dental/métodos
15.
Front Immunol ; 14: 1119591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969234

RESUMEN

Spinal cord injury (SCI) and spinal cord tumor are devastating events causing structural and functional impairment of the spinal cord and resulting in high morbidity and mortality; these lead to a psychological burden and financial pressure on the patient. These spinal cord damages likely disrupt sensory, motor, and autonomic functions. Unfortunately, the optimal treatment of and spinal cord tumors is limited, and the molecular mechanisms underlying these disorders are unclear. The role of the inflammasome in neuroinflammation in diverse diseases is becoming increasingly important. The inflammasome is an intracellular multiprotein complex and participates in the activation of caspase-1 and the secretion of pro-inflammatory cytokines such as interleukin (IL)-1ß and IL-18. The inflammasome in the spinal cord is involved in the stimulation of immune-inflammatory responses through the release of pro-inflammatory cytokines, thereby mediating further spinal cord damage. In this review, we highlight the role of inflammasomes in SCI and spinal cord tumors. Targeting inflammasomes is a promising therapeutic strategy for the treatment of SCI and spinal cord tumors.


Asunto(s)
Traumatismos de la Médula Espinal , Neoplasias de la Médula Espinal , Humanos , Inflamasomas , Traumatismos de la Médula Espinal/patología , Citocinas/uso terapéutico
16.
Food Chem Toxicol ; 172: 113601, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610472

RESUMEN

Cadmium accumulates in the kidney and causes inflammation. The NLRP3 inflammasome has been linked to the pathogenesis of inflammation. Hyperoside (HYP) possesses potent nephroprotective properties against of kidney injury. This study aimed to research the effects and related mechanism of HYP on Cd-induced kidney damage. Wide-type and NLRP3-/- mice were used to determine the role of NLRP3 inflammasome in Cd-induced renal dysfunction. Female C57BL/6 were treated with Cd (50 m,g/L) and HYP (25, 50 mg/kg) for 12 weeks. In vitro experiments, the human renal proximal-tubule epithelial cells (RPTEC/TERT1) were pretreated with HYP (50-200 µM) before exposure to Cd. NLRP3 deficiency attenuated Cd-induced NLRP3 activation, inflammation and kidney injury in mice. HYP treatment significantly alleviated Cd-induced kidney injury by decreasing indexes of kidney function, reducing pro-inflammatory cytokines release, decreasing ROS production and suppressing NLRP3 inflammasome activation. Moreover, treatment with siRNA targeting NLRP3 blocked the anti-inflammatory protective effect of HYP in Cd-treated cells. Additionally, HYP markedly inhibited Cd-induced MAPK/NF-κB pathway stimulation in vitro and in vivo. The findings indicated HYP conferred protection against Cd-induced kidney inflammation via suppression of NLRP3 inflammasome mediated by ROS/MAPK/NF-κB signaling. Our results thus support the notion of developing HYP as promising therapeutic candidate for Cd-induced kidney injury.


Asunto(s)
Inflamasomas , FN-kappa B , Humanos , Femenino , Ratones , Animales , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Riñón , Inflamación/metabolismo
17.
Theranostics ; 12(17): 7550-7566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438474

RESUMEN

Rational: Senescence is a major aging process that contributes to the development of cardiovascular diseases, but the underlying molecular mechanisms remain largely unknown. One reason is due to the lack of suitable animal models. We aimed to generate a cardiomyocyte (CM)-specific senescent animal model, uncover the underlying mechanisms, and develop new therapies for aging associated cardiac dysfunction. Methods: The gain/loss of circHIPK3 approach was used to explore the role of circHIPK3 in cardiomyocyte (CM) senescence. To investigate the mechanisms of circHIPK3 function in cardiac senescence, we generated CM-specific tamoxifen-induced circHIPK3 knockout (CKO) mice. We also applied various analyses including PCR, Western blot, nuclear and cytoplasmic protein extraction, immunofluorescence, echocardiography, RNA immunoprecipitation assay, RNA-pulldown assay, and co-immunoprecipitation. Results: Our novel CKO mice exhibited worse cardiac function, decreased circHIPK3 expression and telomere length shortening in the heart. The level of the senescence-inducer p21 in the hearts of CKO mice was significantly increased and survival was poor compared with control mice. In vitro, the level of p21 in CMs was significantly decreased by circHIPK3 overexpression, but increased by circHIPK3 silencing. We showed that circHIPK3 was a scaffold for p21 mRNA-binding protein HuR and E3 ubiquitin ligase ß-TrCP. circHIPK3 silencing weakened the interaction between HuR and ß-TrCP, reduced HuR ubiquitination, and enhanced the interaction between HuR and p21 mRNA. Moreover, we found that mice injected with human umbilical cord mesenchymal stem cell-derived exosomes (UMSC-Exos) showed increased circHIPK3 levels, decreased levels of p21, longer telomere length, and good cardiac function. However, these beneficial effects exerted by UMSC-Exos were inhibited by silencing circHIPK3. Conclusions: We successfully generated CM-specific CKO mice for aging research. Our results showed that deletion of circHIPK3 led to exaggerated CM senescence and decreased cardiac function. As a scaffold, circHIPK3 enhanced the binding of E3 ubiquitin ligase ß-TrCP and HuR in the cytoplasm, leading to the ubiquitination and degradation of HuR and reduced p21 activity. In addition, UMSC-Exos exerted an anti-senescence and cardio-protective effect by delivering circHIPK3. These findings pave the way to the development of new therapies for aging associated cardiac dysfunction.


Asunto(s)
Senescencia Celular , Cardiopatías , Miocitos Cardíacos , ARN Circular , Animales , Humanos , Ratones , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Cardiopatías/genética , Cardiopatías/metabolismo , ARN , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Senescencia Celular/genética , Senescencia Celular/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología
18.
Chemosphere ; 308(Pt 1): 135946, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36007735

RESUMEN

BACKGROUND: Experimental evidence suggests that exposure to cadmium (Cd) could affect immune cells in vivo and in vitro. However, the associations of long-term Cd exposure with white blood cell (WBC) subtype counts and hemogram-derived indices have been rarely investigated. Therefore, we evaluated these relationships in residents of cadmium-polluted areas. METHODS: This cross-sectional study included 431 participants aged 45-75 years without occupational exposure histories from Cd-contaminated areas of southern China. We detected WBC, neutrophil, lymphocyte, and monocyte counts using routine blood tests and calculated neutrophil-lymphocyte ratio (NLR), systemic inflammation response index (SIRI), and lymphocyte-monocyte ratio (LMR). Urinary Cd (U-Cd) was measured with inductively coupled plasma mass spectrometry and adjusted for creatinine. To evaluate the associations of U-Cd with peripheral WBC subtype counts and indices, we performed multivariate linear regression, logistic regression and subgroup analyses using U-Cd categorized into quartiles. RESULTS: In models adjusted for all potential confounders, U-Cd was negatively associated with WBC, neutrophil, and monocyte counts in Q2, compared with Q1 of U-Cd (p < 0.05). A similar relationship was observed between U-Cd and NLR and SIRI, whereas the corresponding association for LMR was positive (p < 0.05). In subgroup analyses, U-Cd was negatively associated with neutrophil count, except for never smokers, after full adjustment. CONCLUSIONS: U-Cd was negatively associated with WBC count, neutrophil count, monocyte count, NLR, and SIRI, and positively associated with LMR. Therefore, neutrophil count could be a potential indicator of long-term Cd exposure-associated immunosuppressive effect.


Asunto(s)
Cadmio , Neutrófilos , Cadmio/toxicidad , Creatinina , Estudios Transversales , Humanos , Recuento de Leucocitos
20.
Bone Res ; 10(1): 38, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477573

RESUMEN

Articular cartilage damage is a universal health problem. Despite recent progress, chondrocyte dedifferentiation has severely compromised the clinical outcomes of cell-based cartilage regeneration. Loss-of-function changes are frequently observed in chondrocyte expansion and other pathological conditions, but the characteristics and intermediate molecular mechanisms remain unclear. In this study, we demonstrate a time-lapse atlas of chondrocyte dedifferentiation to provide molecular details and informative biomarkers associated with clinical chondrocyte evaluation. We performed various assays, such as single-cell RNA sequencing (scRNA-seq), live-cell metabolic assays, and assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), to develop a biphasic dedifferentiation model consisting of early and late dedifferentiation stages. Early-stage chondrocytes exhibited a glycolytic phenotype with increased expression of genes involved in metabolism and antioxidation, whereas late-stage chondrocytes exhibited ultrastructural changes involving mitochondrial damage and stress-associated chromatin remodeling. Using the chemical inhibitor BTB06584, we revealed that early and late dedifferentiated chondrocytes possessed distinct recovery potentials from functional phenotype loss. Notably, this two-stage transition was also validated in human chondrocytes. An image-based approach was established for clinical use to efficiently predict chondrocyte plasticity using stage-specific biomarkers. Overall, this study lays a foundation to improve the quality of chondrocytes in clinical use and provides deep insights into chondrocyte dedifferentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...