Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
1.
Angew Chem Int Ed Engl ; : e202406711, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923764

RESUMEN

Spin state is often regarded as the crucial valve to release the reactivity of energy-related catalysts, yet it is also challenging to precisely manipulate, especially for the active center ions occupied at the specific geometric sites. Herein, a π-π type orbital coupling of 3d (Co)-2p (O)-4f (Ce) was employed to regulate the spin state of octahedral cobalt sites (CoOh) in the composite of Co3O4/CeO2. More specifically, the equivalent high-spin ratio of CoOh can reach to 54.7% via tuning the CeO2 content, thereby triggering the average eg filling (1.094) close to the theoretical optimum value. The corresponding catalyst exhibits a superior water oxidation performance with an overpotential of 251 mV at 10 mA cm-2, rivaling most cobalt-based oxides state-of-the-art. The π-π type coupling corroborated by the matched energy levels between Ce t1u/t2u-O and CoOh t2g-O π type bond in the calculated crystal orbital Hamilton population and partial density of states profiles, stimulates a π-donation between O 2p and π-symmetric Ce 4fyz2 orbital, consequently facilitating the electrons hopping from t2g to eg orbital of CoOh. This work offers an in-depth insight into understanding the 4f and 3d orbital coupling for spin state optimization in composite oxides.

2.
Clin Exp Hypertens ; 46(1): 2366270, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38864268

RESUMEN

OBJECTIVE: To elucidate the underlying mechanism by which the proliferation and migration abilities of human umbilical cord mesenchymal stem cells (hUC-MSCs) determine their therapeutic efficacy in rheumatoid arthritis treatment. METHODS: The DBA/1J mice were utilized to establish a collagen-induced RA (CIA) mouse model and to validate the therapeutic efficacy of hUC-MSCs transfected with CD151 siRNA. RNA-seq, QT-PCR and western blotting were utilized to evaluate the mRNA and protein levels of the PI3K/AKT pathway, respectively. RESULTS: IFN-γ significantly enhanced the proliferation and migration abilities of hUC-MSCs, up-regulating the expression of CD151, a gene related to cell proliferation and migration. Effective inhibition of this effect was achieved through CD151 siRNA treatment. However, IFN-γ did not affect hUC-MSCs differentiation or changes in cell surface markers. Additionally, transplantation of CD151-interfered hUC-MSCs (siRNA-CD151-hUC-MSCs) resulted in decreased colonization in the toes of CIA mice and worse therapeutic effects compared to empty vector treatment (siRNA-NC-hUC-MSCs). CONCLUSION: IFN-γ facilitates the proliferation and migration of hUC-MSCs through the CD151/PI3K/AKT pathway. The therapeutic efficacy of siRNA-CD151-hUC-MSCs was found to be inferior to that of siRNA-NC-hUC-MSCs.


Asunto(s)
Artritis Reumatoide , Movimiento Celular , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos DBA , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos , Interferón gamma/metabolismo , Cordón Umbilical/citología , Artritis Experimental/terapia , Artritis Experimental/metabolismo , Masculino
3.
Sensors (Basel) ; 24(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38894220

RESUMEN

Interactive devices such as touch screens have gained widespread usage in daily life; this has directed the attention of researchers to the quality of screen glass. Consequently, defect detection in screen glass is essential for improving the quality of smartphone screens. In recent years, defect detection methods based on deep learning have played a crucial role in improving detection accuracy and robustness. However, challenges have arisen in achieving high-performance detection due to the small size, irregular shapes and low contrast of defects. To address these challenges, this paper proposes CE-SGNet, a Context-Enhanced Network with a Spatial-aware Graph, for smartphone screen defect detection. It consists of two novel components: the Adaptive Receptive Field Attention Module (ARFAM) and the Spatial-aware Graph Reasoning Module (SGRM). The ARFAM enhances defect features by adaptively extracting contextual information to capture the most relevant contextual region of defect features. The SGRM constructs a region-to-region graph and encodes region features with spatial relationships. The connections among defect regions are enhanced during the propagation process through a graph attention network. By enriching the feature representations of defect regions, the CE-SGNet can accurately identify and locate defects of various shapes and scales. Experimental results demonstrate that the CE-SGNet achieves outstanding performance on two public datasets.

4.
J Org Chem ; 89(12): 9001-9010, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38842478

RESUMEN

2,3-Allenamides are an important class of unsaturated group-substituted carbonyl compounds. A palladium-catalyzed aminocarbonylation of propargyl acetates with amines for the synthesized tri-/tetrasubstituted 2,3-allenamides has been developed. A broad range of tri-/tetrasubstituted 2,3-allenamides have been prepared from propargyl acetates in good to excellent yields. The reaction featured mild reaction conditions and good functional group tolerance. The applicability of this methodology was further highlighted by the late-stage modification of several natural products and pharmaceuticals.

5.
Cell Death Dis ; 15(6): 395, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839744

RESUMEN

Hepatocellular carcinoma (HCC) is a highly heterogeneous and malignant cancer with poor overall survival. The application of sorafenib is a major breakthrough in the treatment of HCC. In our study, FOXQ1 was significantly overexpressed in sorafenib-resistant HCC cells and suppressed sorafenib-induced ferroptosis. We found that phosphorylation of FOXQ1 at serine 248 is critical for the suppression of sorafenib-induced ferroptosis. Furthermore, as the upstream phosphorylation kinase of FOXQ1, JNK1, which is activated by sorafenib, can directly phosphorylate the serine 248 site of FOXQ1. Then, the phosphorylated FOXQ1 got a high affinity for the promoter of ETHE1 and activates its transcription. Further flow cytometry results showed that ETHE1 reduced intracellular lipid peroxidation and iron levels. Collectively, our study implicated the JNK1-FOXQ1-ETHE1 axis in HCC ferroptosis induced by sorafenib, providing mechanistic insight into sensitivity to sorafenib therapy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Proteína Quinasa 8 Activada por Mitógenos , Sorafenib , Ferroptosis/efectos de los fármacos , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Fosforilación/efectos de los fármacos , Línea Celular Tumoral , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Animales , Ratones Desnudos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología
6.
Small ; : e2402101, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888117

RESUMEN

Tumor-associated macrophages (TAMs) play a crucial function in solid tumor antigen clearance and immune suppression. Notably, 2D transitional metal dichalcogenides (i.e., molybdenum disulfide (MoS2) nanozymes) with enzyme-like activity are demonstrated in animal models for cancer immunotherapy. However, in situ engineering of TAMs polarization through sufficient accumulation of free radical reactive oxygen species for immunotherapy in clinical samples remains a significant challenge. In this study, defect-rich metastable MoS2 nanozymes, i.e., 1T2H-MoS2, are designed via reduction and phase transformation in molten sodium as a guided treatment for human breast cancer. The as-prepared 1T2H-MoS2 exhibited enhanced peroxidase-like activity (≈12-fold enhancement) than that of commercial MoS2, which is attributed to the charge redistribution and electronic state induced by the abundance of S vacancies. The 1T2H-MoS2 nanozyme can function as an extracellular hydroxyl radical generator, efficiently repolarizing TAMs into the M1-like phenotype and directly killing cancer cells. Moreover, the clinical feasibility of 1T2H-MoS2 is demonstrated via ex vivo therapeutic responses in human breast cancer samples. The apoptosis rate of cancer cells is 3.4 times greater than that of cells treated with chemotherapeutic drugs (i.e., doxorubicin).

7.
J Integr Plant Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888227

RESUMEN

Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.

8.
Chem Soc Rev ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895859

RESUMEN

Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.

9.
ACS Nano ; 18(24): 15590-15606, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847586

RESUMEN

To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.


Asunto(s)
Medios de Contraste , Ultrasonografía , Medios de Contraste/química , Medios de Contraste/farmacología , Humanos , Animales , Ratones , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/terapia , Imagen Óptica , Gases/química , Línea Celular Tumoral , Femenino , Ratones Desnudos
10.
J Agric Food Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899526

RESUMEN

Monolignols and their derivatives exhibit various pharmaceutical and physiological characteristics, such as antioxidant and anti-inflammatory properties. However, they remain difficult to synthesize. In this study, we engineered several whole-cell bioconversion systems with carboxylate reductase (CAR)-mediated pathways for efficient synthesis of p-coumaryl, caffeyl, and coniferyl alcohols from l-tyrosine in Escherichia coli BL21 (DE3). By overexpressing the l-tyrosine ammonia lyase from Flavobacterium johnsoniae (FjTAL), carboxylate reductase from Segniliparus rugosus (SruCAR), alcohol dehydrogenase YqhD and hydroxylase HpaBC from E. coli, and caffeate 3-O-methyltransferase (COMT) from Arabidopsis thaliana, three enzyme cascades FjTAL-SruCAR-YqhD, FjTAL-SruCAR-YqhD-HpaBC, and FjTAL-SruCAR-YqhD-HpaBC-COMT were constructed to produce 1028.5 mg/L p-coumaryl alcohol, 1015.3 mg/L caffeyl alcohol, and 411.4 mg/L coniferyl alcohol from 1500, 1500, and 1000 mg/L l-tyrosine, with productivities of 257.1, 203.1, and 82.3 mg/L/h, respectively. This work provides an efficient strategy for the biosynthesis of p-coumaryl, caffeyl, and coniferyl alcohols from l-tyrosine.

11.
Water Res ; 258: 121821, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796913

RESUMEN

Phosphorus affects microbial metabolic activity, nitrogen and carbon cycling in mangrove sediment, but its influence on carbon stability and greenhouse gases emission remains unclear. This study compared greenhouse gases (CO2, N2O, and CH4) emissions from mangrove sediment receiving wastewater containing various phosphorus concentrations, and evaluated its long term effect on sediment carbon flux when phosphorus pollution is eliminated. Significant increases in greenhouse gases flux and decrease of total organic carbon and readily oxidizable organic carbon in the sediment were observed after phosphorus discharge. Specifically, the N2O flux was reduced significantly at high phosphorus levels while the CO2 flux and the microbial biomass organic carbon was increased. The copy numbers of ammonia oxidation (AOA-amoA, AOB-amoA) gene, denitrification (narG, nirK) gene and methanogenesis (mcrA) gene increased with the increasing phosphorus concentration. During the wastewater discharge period for 70 days, the global warming potential of sediment flux at high phosphorus discharge condition was more than 4 times that of the control group, and the loss of total organic carbon and readily oxidizable organic carbon was 4.66 % and 7.1 %, respectively. During the remediation period (71-101 days), the greenhouse gases flux decreased rapidly, ends up with a similar level of the control group. Our results indicate that using mangrove wetland for pollution minimization in the coastal aquaculture industry could increase greenhouse gases emisison significantly, it is therefore essential to reduce phosphorus discharges from various anthropogenic activities, and local authorities must set up more stringent discharge standards in the future.


Asunto(s)
Fósforo , Humedales , Sedimentos Geológicos/química , Aguas Residuales/química , Carbono
12.
J Colloid Interface Sci ; 671: 621-630, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820846

RESUMEN

Lithium (Li) metal anodes (LMAs) are regarded as leading technology for advanced-generation batteries due to their high theoretical capacity and favorable redox potential. However, the practical integration of LMAs into high-energy rechargeable batteries is hindered by the challenge of Li dendrite growth. In this work, nanoparticles of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) loaded with Ce(OH)3 (LLZTCO) were designed and synthesized by a hydrothermal method. A functional composite separator was crafted by coating one side of a polypropylene (PP) separator with a composite electrolyte comprised of polyvinylidene fluoride (PVDF) and LLZTCO. The synergistic interactions between PVDF and LLZTCO provide numerous rapid lithium-ion (Li+) channels, facilitating the efficient redistribution of disparate Li+ flux originating from the insulated PP separator. The composite separator demonstrated an ionic conductivity (σ) of 3.68 × 10-3 S cm-1, substantial Li+ transference number (t+) of 0.73, and a high electrochemical window of 4.8 V at 25℃. Furthermore, the Li/LLZTCO@PP/Li symmetric cells demonstrated stable cycling for over 2000 h without significant dendrite formation. The Li/LiFePO4 (LFP) cells assembled with LLZTCO@PP separators exhibited a capacity retention of 91.6 % after 400 cycles at 1C. This study offers a practical approach to fabricating composite separators with enhanced safety and superior electrochemical performance.

13.
Org Lett ; 26(22): 4779-4783, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38807481

RESUMEN

A new strategy to obtain ß,γ-unsaturated ketones via the cross-coupling of 1,3-butadiene, alkyl bromides, and arylboronic acids under 1 bar of CO with nickel as the catalyst has been developed. This newly developed four-component carbonylation procedure features advantages including using a cheap catalytic system, high step economy, mild reaction conditions, and excellent 1,4-regioselectivity, thereby providing a sustainable and alternative tool for ß,γ-unsaturated ketones production compared to the present tactics. To elucidate the application potential of this method, olefin synthons are derived from the representative coupling product.

14.
J Phys Chem A ; 128(19): 3777-3783, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38691449

RESUMEN

Transition metal-catalyzed multicomponent carbonylation is an efficient synthetic strategy to access multifunctional esters in high yields with broad functional group tolerance and good chemoselectivity. Considering the development of highly efficient synthetic methods for esters, it remains significant to grasp the mechanism of constructing multifunctional esters. Herein, density functional theoretical calculations were carried out to acquire mechanistic insight into the synthesis of ß-perfluoroalkyl esters from a specific palladium-catalyzed perfluoroalkylative carbonylation of unactivated alkenes using carbon monoxide. A detailed mechanistic understanding of this reaction route includes (1) multistep radical reaction process, (2) C-C coupling and CO insertion, (3) ligand exchange, and (4) Pd-based intermediate oxidation and reductive elimination. The multistep radical process was fundamentally rationalized, including Rf· formation and radicals A and E from unactivated alkene and CO oxidation, respectively. The potential energy calculation indicated that the CO insertion into the perfluorinated alkyl radicals preceded Pd-catalyzed oxidation in the competitively multistep free radical reaction process. In addition, the I-/PhO- exchange step was predicted to be spontaneous to products. The IGMH analysis further attested to the reductive elimination process involved in the rate-determining step. Thus, a simple and valid density functional theory (DFT) approach was developed to reveal the multistep radical mechanism for the Pd-catalyzed perfluoroalkylative carbonylation of unactivated alkenes to access functional ß-perfluoroalkyl esters.

15.
J Hazard Mater ; 473: 134536, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759406

RESUMEN

With the widespread use of antibiotics and increasing environmental concerns regarding antibiotic abuse, the detection and degradation of antibiotic residues in various samples has become a pressing issue. Transcriptional factor (TF)-based whole-cell biosensors are low-cost, easy-to-use, and flexible tools for detecting chemicals and controlling bioprocesses. However, because of cytotoxicity caused by antibiotics, the application of such biosensors is limited in the presence of antibiotics. In this study, we used antibiotic-tolerant mutants obtained via adaptive laboratory evolution (ALE) to develop TF-based whole-cell biosensors for antibiotic monitoring and degradation. The biosensors had high performance and stability in detecting relatively high concentrations of tetracycline (Tc) and nisin. The ALE mutant-based Tc biosensor exhibited a 10-fold larger linear detection range than the wild-type strain-based biosensor. Then, the Tc biosensor was employed to detect residual amounts of Tc in mouse stool, serum, and urine samples and facilitate Tc biodegradation in mouse stool, demonstrating its high utility. Considering that ALE has been demonstrated to enhance cell tolerance to various toxic chemicals, our strategy might facilitate the development of whole-cell biosensors for most antibiotics and other toxic ligands.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Mutación , Tetraciclina , Factores de Transcripción , Técnicas Biosensibles/métodos , Antibacterianos/toxicidad , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Nisina , Escherichia coli/genética , Escherichia coli/metabolismo , Biodegradación Ambiental , Heces/química , Evolución Molecular Dirigida
16.
Nat Biomed Eng ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745110

RESUMEN

Technology for spatial multi-omics aids the discovery of new insights into cellular functions and disease mechanisms. Here we report the development and applicability of multi-omics in situ pairwise sequencing (MiP-seq), a method for the simultaneous detection of DNAs, RNAs, proteins and biomolecules at subcellular resolution. Compared with other in situ sequencing methods, MiP-seq enhances decoding capacity and reduces sequencing and imaging costs while maintaining the efficacy of detection of gene mutations, allele-specific expression and RNA modifications. MiP-seq can be integrated with in vivo calcium imaging and Raman imaging, which enabled us to generate a spatial multi-omics atlas of mouse brain tissues and to correlate gene expression with neuronal activity and cellular biochemical fingerprints. We also report a sequential dilution strategy for resolving optically crowded signals during in situ sequencing. High-throughput in situ pairwise sequencing may facilitate the multidimensional analysis of molecular and functional maps of tissues.

17.
Beilstein J Org Chem ; 20: 973-1000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711593

RESUMEN

Carbonylation processes have become widely recognized as a versatile, convenient, and low-cost method for the synthesis of high-value compounds. Given the great importance of heterocyclic compounds, the carbonylative approach has become increasingly important for their synthesis. In this mini-review, as a class of benzo-fused nitrogen-containing heterocyclic compounds, we summarized and discussed the recent achievements on the synthesis and functionalization of indole derivatives via carbonylative approaches.

18.
Small ; : e2401103, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709231

RESUMEN

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

19.
Adv Mater ; 36(26): e2401857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594018

RESUMEN

Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.

20.
Chem Commun (Camb) ; 60(35): 4656-4658, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38587483

RESUMEN

Ketones exist widely in naturally occurring products and are indispensable building blocks in organic synthesis. Carbonylation represents one of the most straightforward methods for ketone preparation and has become an attractive field in modern organic chemistry as well. Among the strategies, photocatalytic carbonylation is also worthy of further exploration. Herein, we developed a three-component carbonylation that provides a new method for the synthesis of ketones from Hantzsch esters, CO and styrenes. The reaction was performed under a blue light environment and yields a series of ketones with moderate to good yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...