Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Contam Hydrol ; 266: 104416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236379

RESUMEN

The residual air saturation plays a crucial role in modeling hydrological processes of groundwater and the migration and distribution of contaminants in subsurface environments. However, the influence of factors such as media properties, displacement history, and hydrodynamic conditions on the residual air saturation is not consistent across different displacement scenarios. We conducted consecutive drainage-imbibition cycles in sand-packed columns under hydraulic conditions resembling natural subsurface environments, to investigate the impact of wetting flow rate, initial fluid state, and number of imbibition rounds (NIR) on residual air saturation. The results indicate that residual air saturation changes throughout the imbibition process, with variations separated into three distinct stages, namely, unstable residual air saturation (Sgr-u), momentary residual air saturation (Sgr-m), and stable residual air saturation (Sgr). The results also suggest that the transition from Sgr-u to Sgr is driven by changes in hydraulic pressure and gradient; the calculated values followed the following trend: Sgr > Sgr-u > Sgr-m. An increase in capillary number, which ranged from 1.46 × 10-7 to 3.07 × 10-6, increased Sgr-u and Sgr-m in some columns. The increase in Sgr ranged from 0.034 to 0.117 across all the experimental columns; this consistent increase can be explained by water film expansion at the primary wetting front along with a strengthening of the hydraulic gradient during water injection. Both the pre-covered water film on the sand grain surface and a pore-to-throat aspect ratio of up to 4.42 were identified as important factors for the increased residual air saturation observed during the imbibition process. Initial air saturation (Sai) positively influenced all three types of residual air saturation, while initial capillary pressure (Pci) exhibited a more pronounced inhibitory effect on residual air saturation, as it can partly characterized the initial connectivity of the air phase generated under different drying flow rates. Under identical wetting flow rate conditions, Sgr was higher during the second imbibition than during the first imbibition due to variations in initial fluid state, involving both fluid distribution and the concentration of dissolved air in the pore water. In contrast, NIR did not have an obvious effect on the three types of residual air saturation. This work aims to provide empirical evidences and offer further insights into the capture of non-wetting phases in groundwater environments, as well as to put forward some potential suggestion for future investigations on the retention and migration of contaminants that involves multiphase interface interactions in subsurface environments.


Asunto(s)
Aire , Agua Subterránea , Agua Subterránea/química , Arena , Hidrodinámica , Movimientos del Agua
2.
J Youth Adolesc ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251472

RESUMEN

Bullying victimization is prevalent among adolescents and often linked to emotional problems. Prior studies have been focused on the concurrent or longitudinal associations between bullying victimization and emotional problems, but the daily associations and the underlying mechanisms remain unclear. Implementing daily diary method, the study aimed to examine the links between daily victimization and positive and negative affect as well as the mediating role of sleep quality and disturbance. A total of 265 Chinese adolescents (Mage = 11.65, SD = 0.74; 32.80% females) participated in this study and completed 7-day daily diaries on bullying victimization (traditional and cyber victimization), sleep quality and disturbance, and affect. As hypothesized, at the between-person level, sleep disturbance mediated the relationships between both traditional and cyber victimization and subsequent negative affect. At the within-person level, sleep quality mediated the pathway between traditional victimization and next-day negative affect; furthermore, sleep disturbance mediated the pathway between traditional victimization and positive affect the following day. These findings highlight the mediating roles of sleep quality and sleep disturbance in the relationships between stressful victimizing experiences and emotional problems and also provide novel insights into these associations.

3.
J Nat Prod ; 87(9): 2160-2169, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190018

RESUMEN

Notoginsenosides are important bioactive compounds from Panax notoginseng (Burk.) F. H. Chen, most of which have xylose in their sugar chains. However, the xylosyltransferases involved in the generation of notoginsenosides remain poorly understood, posing a bottleneck for further study of the biosynthesis of notoginsenosides. In this work, a new xylosyltransferase gene, PnUGT57 (named UGT94BW1), was identified from P. notoginseng, which has a distinct sequence and could catalyze the 2'-O glycosylation of ginsenosides Rh1 and Rg1 to produce notoginsenosides R2 and R1, respectively. We first characterized the optimal conditions for the PnUGT57 activity and its enzymatic kinetic parameters, and then, molecular docking and site-directed mutagenesis were performed to elucidate the catalytic mechanism of PnUGT57. Combined with the results of site-directed mutagenesis, Glu26, Ser266, Glu267, Trp347, Ser348, and Glu352 in PnUGT57 were identified as the key residues involved in 2'-O glycosylation of C-6 O-Glc, and PnUGT57R175A and PnUGT57G237A could significantly improve the catalytic activity of PnUGT57. These findings not only provide a new xylosyltransferase gene for augmenting the plant xylosyltransferase database but also identify the pivotal sites and catalytic mechanism of the enzyme, which would provide reference for the modification and application of xylosyltransferases in the future.


Asunto(s)
Ginsenósidos , Panax notoginseng , Pentosiltransferasa , UDP Xilosa Proteína Xilosiltransferasa , Ginsenósidos/metabolismo , Ginsenósidos/biosíntesis , Ginsenósidos/química , Glicosilación , Pentosiltransferasa/metabolismo , Pentosiltransferasa/genética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Simulación del Acoplamiento Molecular
4.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709346

RESUMEN

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Asunto(s)
Colorantes Fluorescentes , Uranio , Uranio/análisis , Uranio/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Humanos , Límite de Detección , Materiales Biocompatibles/química , Células HeLa , Supervivencia Celular/efectos de los fármacos , Imagen Óptica , Compuestos de Anilina/química , Compuestos de Anilina/toxicidad , Piridinas/química
5.
ACS Nano ; 18(9): 7204-7222, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373291

RESUMEN

Commercial collagen membranes face difficulty in guided bone regeneration (GBR) due to the absence of hierarchical structural design, effective interface management, and diverse bioactivity. Herein, a Janus membrane called SrJM is developed that consists of a porous collagen face to enhance osteogenic function and a dense face to maintain barrier function. Specifically, biomimetic intrafibrillar mineralization of collagen with strontium apatite is realized by liquid precursors of amorphous strontium phosphate. Polycaprolactone methacryloyl is further integrated on one side of the collagen as a dense face, which endows SrJM with mechanical support and a prolonged lifespan. In vitro experiments demonstrate that the dense face of SrJM acts as a strong barrier against fibroblasts, while the porous face significantly promotes cell adhesion and osteogenic differentiation through activation of calcium-sensitive receptor/integrin/Wnt signaling pathways. Meanwhile, SrJM effectively enhances osteogenesis and angiogenesis by recruiting stem cells and modulating osteoimmune response, thus creating an ideal microenvironment for bone regeneration. In vivo studies verify that the bone defect region guided by SrJM is completely repaired by newly formed vascularized bone. Overall, the outstanding performance of SrJM supports its ongoing development as a multifunctional GBR membrane, and this study provides a versatile strategy of fabricating collagen-based biomaterials for hard tissue regeneration.


Asunto(s)
Apatitas , Osteogénesis , Apatitas/farmacología , Regeneración Ósea , Colágeno/química , Estroncio/farmacología
6.
J Nat Prod ; 87(2): 176-185, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38277488

RESUMEN

Celastrol is a bioactive pentacyclic triterpenoid with promising therapeutic effects that is mainly distributed in Celastraceae plants. Although some enzymes involved in the celastrol biosynthesis pathway have been reported, many biosynthetic steps remain unknown. Herein, transcriptomics and metabolic profiles of multiple species in Celastraceae were integrated to screen for cytochrome P450s (CYPs) that are closely related to celastrol biosynthesis. The CYP716 enzyme, TwCYP716C52, was found to be able to oxidize the C-2 position of polpunonic acid, a precursor of celastrol, to form the wilforic acid C. RNAi-mediated repression of TwCYP716C52 in Tripterygium wilfordii suspension cells further confirmed its involvement in celastrol biosynthesis. The C-2 catalytic mechanisms of TwCYP716C52 were further explored by using molecular docking and site-directed mutagenesis experiments. Moreover, a modular optimization strategy was used to construct an engineered yeast to produce wilforic acid C at a titer of 5.8 mg·L-1. This study elucidates the celastrol biosynthetic pathway and provides important functional genes and sufficient precursors for further enzyme discovery.


Asunto(s)
Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Tripterygium/genética
7.
New Phytol ; 241(4): 1720-1731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013483

RESUMEN

Wilforlide A is one of the main active constituents produced in trace amounts in Tripterygium wilfordii Hook F, which has excellent anti-inflammatory and immune suppressive effects. Despite the seeming structural simplicity of the compound, the biosynthetic pathway of wilforlide A remains unknown. Gene-specific expression analysis and genome mining were used to identify the gene candidates, and their functions were studied in vitro and in vivo. A modularized two-step (M2S) technique and CRISPR-Cas9 methods were used to construct engineering yeast. Here, we identified a cytochrome P450, TwCYP82AS1, that catalyses C-22 hydroxylation during wilforlide A biosynthesis. We also found that TwCYP712K1 to K3 can further oxidize the C-29 carboxylation of oleanane-type triterpenes in addition to friedelane-type triterpenes. Reconstitution of the biosynthetic pathway in engineered yeast increased the precursor supply, and combining TwCYP82AS1 and TwCYP712Ks produced abrusgenic acid, which was briefly acidified to achieve the semisynthesis of wilforlide A. Our work presents an alternative metabolic engineering approach for obtaining wilforlide A without relying on extraction from plants.


Asunto(s)
Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Antiinflamatorios/metabolismo
8.
J Cell Mol Med ; 27(23): 3805-3815, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37786319

RESUMEN

Gingival mesenchymal stem cells (GMSCs) are newly developed seed cells for tissue engineering owing to their easy isolation, abundance and high growth rates. Thy-1 is an important regulatory molecule in the differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the function of Thy-1 in the osteogenic differentiation of GMSCs by reducing the expression of Thy-1 using a lentivirus. The results demonstrated that Thy-1 knockdown promoted the osteogenic differentiation of GMSCs in vitro. Validation by RNA-seq revealed an obvious decrease in Vcam1 and Sox9 gene expression with Thy-1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed genes were enriched in the Wnt signalling pathway. We further demonstrated that Thy-1 knockdown promoted osteogenic differentiation of GMSCs by activating the Wnt/ß-catenin signalling pathway. Therefore, Thy-1 has a key regulatory role in the differentiation of GMSCs and maybe a core molecule connecting transcription factors related to the differentiation of MSCs. Our study also highlighted the potential of Thy-1 to modify MSCs, which may help improve their use in tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Antígenos Thy-1 , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Vía de Señalización Wnt/genética , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
9.
Plant Cell Rep ; 42(11): 1733-1744, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37615706

RESUMEN

KEY MESSAGE: CYP72D19, the first functional gene of the CYP72D subfamily, catalyzes the C-2 hydroxylation of abietane-type diterpenoids. The abietane-type diterpenoids, e.g., triptolide, tripdiolide, and 2-epitripdiolide, are the main natural products for the anti-tumor, anti-inflammatory, and immunosuppressive activities of Tripterygium wilfordii, while their biosynthetic pathways are not resolved. Here, we cloned and characterized the CYP72D19-catalyzed C-2 hydroxylation of dehydroabietic acid, a compound that has been proven to be a biosynthetic intermediate in triptolide biosynthesis. Through molecular docking and site-directed mutagenesis, L386, L387, and I493 near the active pocket were found to have an important effect on the enzyme activity, which also indicates that steric hindrance of residues plays an important role in function. In addition, CYP72D19 also catalyzed a variety of abietane-type diterpenoids with benzene ring, presumably because the benzene ring of the substrate molecule stabilized the C-ring, allowing the protein and the substrate to form a relatively stable spatial structure. This is the first demonstration of CYP72D subfamily gene function. Our research provides important genetic elements for the structural modification of active ingredients and the heterologous production of other 2-hydroxyl abietane-type natural products.


Asunto(s)
Productos Biológicos , Diterpenos , Abietanos/metabolismo , Tripterygium/genética , Hidroxilación , Benceno/metabolismo , Simulación del Acoplamiento Molecular , Diterpenos/química , Diterpenos/metabolismo , Productos Biológicos/metabolismo
10.
Aquac Nutr ; 2023: 9155290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520289

RESUMEN

The optimum phenylalanine (Phe) requirement for hybrid grouper (Epinephelusfuscoguttatus ♀ × Epinepheluslanceolatus ♂) juveniles was determined through an 8-week growth trial. A total of seven isoenergetic (340 kcal per 100 g of dry matter), isonitrogenous, and isolipidic diets were made, containing 8.2 (Phe 8.2), 9.2 (Phe 9.2), 10.1 (Phe 10.1), 11.2 (Phe 11.2), 13.3 (Phe 13.3), 15.2 (Phe 15.2), and 17.3 g/kg (Phe 17.3), respectively. Triplicate tanks of juvenile fish (about 16.7 g/fish) were fed each experimental diet twice daily until apparent satiation. The results indicated that different dietary Phe levels significantly influenced weight gain percentage (WG), feed efficiency (FE), protein efficiency ratio (PER), as well as, productive protein value (PPV). Fish fed Phe 8.2 had the lowest WG or PPV among all experimental treatments. Furthermore, the optimal dietary Phe level increased fold height, width, enterocyte, and microvillus height of fish. The Phe 10.1 group exhibited higher growth hormone (GH) expression in the pituitary compared to other groups. Expression of hepatic insulin-like growth factor-1 (IGF-1) and growth hormone receptor 1 (GHR1) displayed a similar pattern of variation to that of GH. The Phe 13.3 group had lower expression of S6 kinase 1 (S6K1) and target of rapamycin (TOR) than other groups. In addition, fish fed Phe 10.1 had lower levels of nuclear factor erythroid 2 (Nrf2) and heat shock protein 70 (HSP70) in the head kidney, and Cu/Zn-superoxide (Cu/ZnSOD) dismutases in the midgut compared to fish fed other Phe levels. Generally, optimal Phe content in the diet of hybrid grouper was estimated to be 12.7 g/kg of dry matter (27.3 g/kg of dietary protein), and at this level, the feed utilization, gut micromorphology, and immunity of fish were also elevated.

11.
Aquac Nutr ; 2023: 9106332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260466

RESUMEN

This study is aimed at evaluating the effects of dietary protein-to-energy ratios on the growth, immunological response, antioxidative capacity, liver and intestinal histology, and growth-related gene expression of hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). Eight diets were formulated to form different protein/energy ratios of 84, 88, 90, 93, 95, 96, 99, and 103 mg/kcal (P/E84, P/E88, P/E90, P/E93, P/E95, P/E96, P/E99, and P/E103), respectively. These diets contain different levels of gross energy (GE), ranging from 4.13 to 4.76 kcal g-1. Seven hundred and twenty healthy fish (17.15 ± 0.02 g) were randomly dispersed into 24 rectangular fiberglass tanks with 8 treatments in triplicate groups. The fish fed a P/E ratio of 95 mg/kcal demonstrated the best growth and feed utilization. A significant (P < 0.05) increase in percent weight gain (WG%) and specific growth rate (SGR) was seen as the dietary P/E ratio ameliorated from P/E84 to P/E95, followed by a decreased pattern in these parameters. Feed conversion ratio (FCR) and daily feed intake (DFI) were significantly impacted by dietary P/E ratios (P < 0.05). Additionally, an optimum P/E ratio improved intestinal morphology. However, low or high P/E ratio diets can cause oxidative stress, impaired liver function, and significantly reduced nonspecific immunity. The expression of target of rapamycin (TOR) and insulin-like growth factor-1 (IGF1) genes in the liver was considerably influenced by dietary protein-to-energy ratios (P < 0.05). Based on the statistical analysis of WG% against the dietary P/E ratio, the optimal P/E ratio for the studied species was estimated to be 92.92 mg/kcal.

12.
Se Pu ; 41(6): 472-481, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37259871

RESUMEN

Perfluorinated compounds (PFCs) are widely used in textiles, fire protection, metal electroplating, and semiconductor production owing to their hydrophobic and oil-repellent characteristics. However, they are also persistent organic pollutants. The uncontrolled discharge of PFCs into the environment has led to serious global pollution. PFCs pose severe reproductive, neural, immune, and other threats to human health by accumulating through the food chain. Thus, the development and application of high-performance extraction materials has become a research hotspot in efforts to achieve the accurate detection of trace PFCs in environmental waters. Most traditional PFC adsorbents present a number of disadvantages, such as low adsorption selectivity, slow diffusion, and poor reusability. Covalent organic frameworks (COFs) are crystalline polymers with ordered porous structures, large specific surface areas, and high chemical and thermal stability. These frameworks can easily be functionalized for the desired purpose. In this paper, spherical amino-functionalized COFs (denoted COF-NH2) were fabricated via a two-step method to effectively enrich/remove PFCs from water. First, vinyl covalent organic framework (Vinyl COF) was synthesized at room temperature using 1,4-diradical-2,5-divinylbenzene (Dva) and 1,3,5-tris(4-aminophenyl)benzene (Tab) as building blocks. Then, thioether-bridged aromatic amine-functionalized spherical COF-NH2 was synthesized through a thiol-alkenyl click reaction using 4-aminothiophenol as the functional monomer. COF-NH2 showed good dispersion in water owing to its abundant amino groups, forming multiple hydrogen bonds with the F atoms of PFCs. The synergistic hydrophobic interactions between the organic skeleton of the COF and alkyl carbon chains of the PFCs led to enhanced adsorption efficiency. The produced Vinyl COF and COF-NH2 were characterized by Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Brunner-Emmet-Teller (BET) measurements. The results confirmed that spherical COF-NH2 materials with a homogeneous size distribution were successfully fabricated. The obtained COF-NH2 microspheres had a diameter of approximately 500 nm and exhibited high thermal stability as well as a large specific surface area and pore volume. The adsorption kinetics, isotherm adsorption models, pH effects, and regeneration properties of COF-NH2 were also investigated, and the results indicated that the adsorption of PFCs by COF-NH2 conformed to the pseudo-second-order kinetic and Langmuir isotherm adsorption models. The obtained COF-NH2 microspheres can be applied over a wide pH range, and the best adsorption effect was achieved in neutral and alkaline environments. After five cycles of regeneration and reuse, the COF-NH2 microspheres retained their good adsorption efficiency for PFCs. The adsorption mechanism was mainly attributed to the synergistic effect of hydrogen bonding and hydrophobic interactions between COF-NH2 and the PFCs. The extraction efficiencies of the microspheres toward five PFCs (perfluorobutyric acid, perfluorovaleric acid, perfluorohexanoic acid, perfluorooctanoic acid, and perfluorononanoic acid) in tap and Pearl River water samples were between 91.76% and 98.59%, with relative standard deviations (RSDs) (n=3) varying from 0.82% to 3.8%; these findings indicate that the obtained COF-NH2 is promising for the extraction of PFCs from complex water samples. Given their uniform size distribution, high thermal stability, good adsorption performance, and reusability, the novel spherical COF-NH2 materials developed in this study may be used as solid-phase extraction materials or filled into liquid chromatographic columns for the enrichment, separation, and detection of PFCs in complex samples.

13.
Synth Syst Biotechnol ; 8(2): 323-330, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37168606

RESUMEN

d-Mannose is an attractive functional sugar that exhibits many physiological benefits on human health. The demand for low-calorie sugars and sweeteners in foods are increasingly available on the market. Some sugar isomerases, such as d-lyxose isomerase (d-LIase), can achieve an isomerization reaction between d-mannose and d-fructose. However, the weak thermostability of d-LIase limits its efficient conversion from d-fructose to d-mannose. Nonetheless, few studies are available that have investigated the molecular modification of d-LIase to improve its thermal stability. In this study, computer-aided tools including FireProt, PROSS, and Consensus Finder were employed to jointly design d-LIase mutants with improved thermostability for the first time. Finally, the obtained five-point mutant M5 (N21G/E78P/V58Y/C119Y/K170P) showed high thermal stability and catalytic activity. The half-life of M5 at 65 °C was 10.22 fold, and the catalytic efficiency towards 600 g/L of d-fructose was 2.6 times to that of the wild type enzyme, respectively. Molecular dynamics simulation and intramolecular forces analysis revealed a thermostability mechanism of highly rigidity conformation, newly formed hydrogen bonds and π-cation interaction between and within protein domains, and redistributed surface electrostatic charges for the mutant M5. This research provided a promising d-LIase mutant for the industrial production of d-mannose from d-fructose.

14.
Hum Gene Ther ; 34(13-14): 616-628, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227014

RESUMEN

Adeno-associated virus (AAV)-based gene therapy has been shown to be safe and effective in numerous animal models and clinical trials for various ophthalmic diseases. Stargardt disease (STGD1; MIM #248200) is the most common autosomal recessive macular dystrophy disease, and the most common form is caused by mutations in the ABCA4 gene, a gene with 6.8 kb coding sequence. Split intein approaches increase the capacity of dual AAV gene therapy, but at the cost of reduced protein expression, which may be insufficient to achieve a therapeutic effect. In this study, we designed various dual split intein ABCA4 vectors and showed that the efficiency of expression of full-length ABCA4 protein is dependent on combinations of types and split sites of the intein system. The most efficient vectors were identified through in vitro screening, and a novel dual AAV8-ABCA4 vector was constructed and subsequently proven to express full-length ABCA4 protein at a high level, reducing bisretinoid formation and correcting the visual function of ABCA4-knockout mice. Furthermore, we evaluated therapeutic effects of different dosages by subretinal injection in mice model. Both therapeutic effects and safety were guaranteed under the treatment of 1.00 × 109 GC/eye. These results support the optimized dual AAV8-ABCA4 approach in future clinical translation for treatment of Stargardt disease.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Ratones , Animales , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/terapia , Degeneración Macular/genética , Degeneración Macular/terapia , Terapia Genética/métodos , Ratones Noqueados , Mutación , Enfermedades de la Retina/terapia
15.
Front Nutr ; 10: 1163823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090781

RESUMEN

Background: Microplastics (MPs) and nanoplastics (NPs) have become emerging contaminants worldwide in food matrices. However, analytical approaches for their determination have yet to be standardized. Therefore, a systematic study is urgently needed to highlight the merits of mass spectrometry (MS) based methods for these applications. Purpose: The aim of the study is to review the current status of MS-based multimodal analysis for the determination of MPs in food matrices. Methods: Web of Science and Google Scholar databases were searched and screened until Jan. 2023. Inclusion criteria: "publication years" was set to the last decades, "English" was selected as the "language," and "research area" was set to environmental chemistry, food analysis and polymer science. The keywords were "microplastics," "nanoplastics," "determination," "identification/quantification," and "mass spectrometry." Results: Traditional spectrometry techniques offer good abilities to conduct the multimodal analysis of MPs in terms of color, shape and other morphologies. However, such technologies have some limitations, in particular the relatively high limits of detection. In contrast, MS-based methods supply excellent supplements. In MS-based methods, gas chromatographic-mass spectrometry (GC-MS), and LC-MS/MS were selected as representative methods for determining MPs in the food matrices, while specialized MS methods (i.e., MALDI-ToF MS and ToF-SIMS) were considered to offer great potential in multimodal analysis of MPs especially when interfaced with the imaging systems. Significance: This study will contribute to gaining a deeper insight into the assessment of the exposure levels of MPs in human body, and may help build a bridge between the monitoring studies and the toxicology field.

16.
Eur J Public Health ; 33(4): 725-731, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030015

RESUMEN

BACKGROUND: Environmental noise is becoming increasingly recognized as an urgent public health problem, but the quality of current studies needs to be assessed. To evaluate the significance, validity and potential biases of the associations between environmental noise exposure and health outcomes. METHODS: We conducted an umbrella review of the evidence across meta-analyses of environmental noise exposure and any health outcomes. A systematic search was done until November 2021. PubMed, Cochrane, Scopus, Web of Science, Embase and references of eligible studies were searched. Quality was assessed by AMSTAR and Grading of Recommendations, Assessment, Development and Evaluation (GRADE). RESULTS: Of the 31 unique health outcomes identified in 23 systematic reviews and meta-analyses, environmental noise exposure was more likely to result in a series of adverse outcomes. Five percent were moderate in methodology quality, the rest were low to very low and the majority of GRADE evidence was graded as low or even lower. The group with occupational noise exposure had the largest risk increment of speech frequency [relative risk (RR): 6.68; 95% confidence interval (CI): 3.41-13.07] and high-frequency (RR: 4.46; 95% CI: 2.80-7.11) noise-induced hearing loss. High noise exposure from different sources was associated with an increased risk of cardiovascular disease (34%) and its mortality (12%), elevated blood pressure (58-72%), diabetes (23%) and adverse reproductive outcomes (22-43%). In addition, the dose-response relationship revealed that the risk of diabetes, ischemic heart disease (IHD), cardiovascular (CV) mortality, stroke, anxiety and depression increases with increasing noise exposure. CONCLUSIONS: Adverse associations were found for CV disease and mortality, diabetes, hearing impairment, neurological disorders and adverse reproductive outcomes with environmental noise exposure in humans, especially occupational noise. The studies mostly showed low quality and more high-quality longitudinal study designs are needed for further validation in the future.


Asunto(s)
Enfermedades Cardiovasculares , Exposición Profesional , Humanos , Estudios Longitudinales , Revisiones Sistemáticas como Asunto , Exposición a Riesgos Ambientales/efectos adversos , Ruido/efectos adversos , Exposición Profesional/efectos adversos , Enfermedades Cardiovasculares/etiología
17.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901977

RESUMEN

Gastrodia elata is a valuable traditional Chinese medicinal plant. However, G. elata crops are affected by major diseases, such as brown rot. Previous studies have shown that brown rot is caused by Fusarium oxysporum and F. solani. To further understand the disease, we studied the biological and genome characteristics of these pathogenic fungi. Here, we found that the optimum growth temperature and pH of F. oxysporum (strain QK8) and F. solani (strain SX13) were 28 °C and pH 7, and 30 °C and pH 9, respectively. An indoor virulence test showed that oxime tebuconazole, tebuconazole, and tetramycin had significant bacteriostatic effects on the two Fusarium species. The genomes of QK8 and SX13 were assembled, and it was found that there was a certain gap in the size of the two fungi. The size of strain QK8 was 51,204,719 bp and that of strain SX13 was 55,171,989 bp. Afterwards, through phylogenetic analysis, it was found that strain QK8 was closely related to F. oxysporum, while strain SX13 was closely related to F. solani. Compared with the published whole-genome data for these two Fusarium strains, the genome information obtained here is more complete; the assembly and splicing reach the chromosome level. The biological characteristics and genomic information we provide here lay the foundation for further research on G. elata brown rot.


Asunto(s)
Fusarium , Gastrodia , Filogenia , Enfermedades de las Plantas/microbiología , Hongos
18.
Insects ; 14(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36835714

RESUMEN

Methyl jasmonate (MeJA) is a volatile substance derived from jasmonic acid (JA), and it responds to interbiotic and abiotic stresses by participating in interplant communication. Despite its function in interplant communication, the specific role of MeJA in insect defense responses is poorly understood. In this study, we found that carboxylesterase (CarE) activities, glutathione-S-transferase (GSTs) activities, and cytochrome mono-oxygenases (P450s) content increased more after the feeding of diets containing xanthotoxin, while larvae exposed to MeJA fumigation also showed higher enzyme activity in a dose-dependent manner: lower and medium concentrations of MeJA induced higher detoxification enzyme activities than higher concentrations of MeJA. Moreover, MeJA improved the growth of larvae fed on the control diet without toxins and diets with lower concentrations of xanthotoxin (0.05%); however, MeJA could not protect the larvae against higher concentrations of xanthotoxin (0.1%, 0.2%). In summary, we demonstrated that MeJA is effective at inducing S. litura defense response, but the enhanced detoxifying ability could not overcome the strong toxins.

19.
J Fungi (Basel) ; 9(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36836292

RESUMEN

Rice spikelet rot disease occurs mainly in the late stages of rice growth. Pathogenicity and biological characteristics of the pathogenic fungus and the infestation site have been the primary focus of research on the disease. To learn more about the disease, we performed whole-genome sequencing of Exserohilum rostratum and Bipolaris zeicola for predicting potentially pathogenic genes. The fungus B. zeicola was only recently identified in rice.We obtained 16 and 15 scaffolds down to the chromosome level for E. rostratum LWI and B. zeicola LWII, respectively. The length of LWI strain was approximately 34.05 Mb, and the G + C content of the whole genome was 50.56%. The length of the LWII strain was approximately 32.21 Mb, and the G + C content of the whole genome was 50.66%. After the prediction and annotation of E. rostratum LWI and B. zeicola LWII, we predicted that the LWI strain and LWII strain contain 8 and 13 potential pathogenic genes, respectively, which may be related to rice infection. These results improve our understanding of the genomes of E. rostratum and B. zeicola and update the genomic databases of these two species. It benefits subsequent studies on the mechanisms of E. rostratum and B. zeicola interactions with rice and helps to develop efficient control measures against rice spikelet rot disease.

20.
J Hazard Mater ; 448: 130864, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736214

RESUMEN

In consideration of the severe hazards of radioactive uranium pollution and the growing demand of uranium resources, the novel sensor/adsorbent composite was creatively developed to integrate the dual functions for on-site detection of uranium contamination and efficient recovery of uranium resources. By hybridizing the luminescent 3D terbium (III) metal-organic framework (Tb-MOF) with sodium alginate (SA) gel using terbium (III) as cross-linker, the Tb-MOF/Tb-AG was fabricated with multi-luminescence centers and sufficient binding sites for uranium. Notably, the ultra-high sensitivity with detection limit as low as 1.2 ppt was achieved, which was 4 orders of magnitude lower than the uranium contamination standard in drinking water (USEPA) and even comparable to the sensitivity of the ICP-MS. Furthermore, the very wide quantification range (1.0 ×10-9-5.0 ×10-4 mol/L), remarkable adsorption capacity (549.0 mg/g) and outstanding anti-interference ability have been achieved without sophisticated sample preparation procedures. Applied in complex natural water samples from Uranium Tailings and the Pearl River, this method has shown good detection accuracy. The ultra high sensitivity and great adsorption capacity for uranium could be ascribed to the synergistic coordination, hydrogen bonding and ion exchange between uranium and Tb-MOF/Tb-AG. The mechanisms were explored by infrared spectroscopy, batch experiments, X-ray photoelectron studies and energy dispersive spectroscopic studies. In addition, the Tb-MOF/Tb-AG can be reused for uranium adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...