Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003591

RESUMEN

Polymers' controlled pyrolysis is an economical and environmentally friendly solution to prepare activated carbon. However, due to the experimental difficulty in measuring the dependence between microstructure and pyrolysis parameters at high temperatures, the unknown pyrolysis mechanism hinders access to the target products with desirable morphologies and performances. In this study, we investigate the pyrolysis process of polystyrene (PS) under different heating rates and temperatures employing reactive molecular dynamics (ReaxFF-MD) simulations. A clear profile of the generation of pyrolysis products determined by the temperature and heating rate is constructed. It is found that the heating rate affects the type and amount of pyrolysis intermediates and their timing, and that low-rate heating helps yield more diverse pyrolysis intermediates. While the temperature affects the pyrolytic structure of the final equilibrium products, either too low or too high a target temperature is detrimental to generating large areas of the graphitized structure. The reduced time plots (RTPs) with simulation results predict a PS pyrolytic activation energy of 159.74 kJ/mol. The established theoretical evolution process matches experiments well, thus, contributing to preparing target activated carbons by referring to the regulatory mechanism of pyrolytic microstructure.


Asunto(s)
Simulación de Dinámica Molecular , Poliestirenos , Poliestirenos/química , Pirólisis , Temperatura , Calefacción
2.
J Phys Chem Lett ; 14(12): 2927-2932, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36930040

RESUMEN

Heterojunction photocatalysts are of great interest in the energy and environmental fields, because of their potential to significantly increase the efficiency of harvesting solar energy. Advances in design have been hampered by the continued use of only qualitative analyses. Quantitative evaluation of the carrier separation performance is urgently needed for the design and application of heterojunction photocatalysts. Taking the g-C3N4/SrTiO3 heterojunction as an example, we address the conventional energy band and electronic structure issues by first-principles analysis. After interface coupling, the band edge alignment reverses from that of the respective isolated states of the heterojunction components, suggesting new ways of thinking about the catalytic mechanism of the heterojunction. More significantly, we show the carrier separation performance of heterojunction photocatalysts can be quantitatively predicted by the nonadiabatic molecular dynamics method, enabling more precisely directed research and promoting the quantified design and application of heterojunction photocatalysis, making a contribution of great scientific significance.

3.
Materials (Basel) ; 15(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35629731

RESUMEN

The preparation of nitrogen-containing porous carbon (NCPC) materials by controlled carbonization is an exciting topic due to their high surface area and good conductivity for use in the fields of electrochemical energy storage and conversion. However, the poor controllability of amorphous porous carbon prepared by carbonization has always been a tough problem due to the unclear carbonation mechanism, which thus makes it hard to reveal the microstructure-performance relationship. To address this, here, we comprehensively employed reactive molecular dynamics (ReaxFF-MD) simulations and first-principles calculations, together with machine learning technologies, to clarify the carbonation process of polypyrrole, including the deprotonation and formation of pore structures with temperature, as well as the relationship between microstructure, conductance, and pore size. This work constructed ring expressions for PPy thermal conversion at the atomic level. It revealed the structural factors that determine the conductivity and pore size of carbonized products. More significantly, physically interpretable machine learning models were determined to quantitatively express structure factors and performance structure-activity relationships. Our study also confirmed that deprotonation preferentially occurred by desorbing the dihydrogen atom on nitrogen atoms during the carbonization of PPy. This theoretical work clearly reproduces the microstructure evolution of polypyrrole on an atomic scale that is hard to do via experimentation, thus paving a new way to the design and development of nitrogen-containing porous carbon materials with controllable morphology and performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA