Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
IEEE Trans Cybern ; PP2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889043

RESUMEN

The application of reinforcement learning (RL) in artificial intelligence has become increasingly widespread. However, its drawbacks are also apparent, as it requires a large number of samples for support, making the enhancement of sample efficiency a research focus. To address this issue, we propose a novel N -step method. This method extends the horizon of the agent, enabling it to acquire more long-term effective information, thus resolving the issue of data inefficiency in RL. Additionally, this N -step method can reduce the estimation variance of Q -function, which is one of the factors contributing to estimation errors in Q -function estimation. Apart from high variance, estimation bias in Q -function estimation is another factor leading to estimation errors. To mitigate the estimation bias of Q -function, we design a regularization method based on the V-function, which has been underexplored. The combination of these two methods perfectly addresses the problems of low sample efficiency and inaccurate Q -function estimation in RL. Finally, extensive experiments conducted in discrete and continuous action spaces demonstrate that the proposed novel N -step method, when combined with classical deep Q -network, deep deterministic policy gradient, and TD3 algorithms, is effective, consistently outperforming the classical algorithms.

2.
J Headache Pain ; 25(1): 103, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898386

RESUMEN

OBJECTIVE: The insula is an important part of the posttraumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) neuropathological activity pattern. It is composed of functionally different subdivisions and each of which plays different role in PTH neuropathology. METHODS: Ninety-four mTBI patients were included in this study. Based on perfusion imaging data obtained from arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI), this study evaluated the insular subregion perfusion-based functional connectivity (FC) and its correlation with clinical characteristic parameters in patients with PTH after mTBI and non-headache mTBI patients. RESULTS: The insular subregions of mTBI + PTH (mTBI patients with PTH) and mTBI-PTH (mTBI patients without PTH) group had positive perfusion-based functional connections with other insular nuclei and adjacent discrete cortical regions. Compared with mTBI-PTH group, significantly increased resting-state perfusion-based FC between the anterior insula (AI) and middle cingulate cortex (MCC)/Rolandic operculum (ROL), between posterior insula (PI) and supplementary motor area (SMA), and decreased perfusion-based FC between PI and thalamus were found in mTBI + PTH group. Changes in the perfusion-based FC of the left posterior insula/dorsal anterior insula with the thalamus/MCC were significant correlated with headache characteristics. CONCLUSIONS: Our findings provide new ASL-based evidence for changes in the perfusion-based FC of the insular subregion in PTH patients attributed to mTBI and the association with headache features, revealing the possibility of potential neuroplasticity after PTH. These findings may contribute to early diagnosis of the disease and follow-up of disease progression.


Asunto(s)
Conmoción Encefálica , Imagen por Resonancia Magnética , Cefalea Postraumática , Marcadores de Spin , Humanos , Masculino , Femenino , Adulto , Cefalea Postraumática/diagnóstico por imagen , Cefalea Postraumática/etiología , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/complicaciones , Conmoción Encefálica/fisiopatología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Corteza Insular/diagnóstico por imagen , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología
3.
Environ Pollut ; 355: 124177, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763295

RESUMEN

The electrolytic manganese industry produces a large amount of electrolytic manganese residue (EMR). Soluble Mn, NH4+-N, and other pollutants may be released from the open-air stacked EMR and transported to the environment along with rainfall or surface runoff. Aqueous EMR solution (AES) generally contains various elements required for plant growth, and phytoremediation can be applied to remove these pollutants from AES. Since the contents of Fe and Co vary greatly in AES depending on the ore sources as well as the pre-treatment processes, the presence of bioavailable Fe and Co at different levels may affect plant growth, the rhizosphere microbes, and pollutant removal. The present study investigated the in-situ removal of Mn(II) and NH4+-N from AES solution using free floating aquatic plant Pistia stratiotes, focusing especially on the effects of Fe/Co presence and rhizospheric microbe synergistic involvement on contaminant removal. The results showed that 69.08% of Mn and 94.99% of NH4+-N were removed by P. stratiotes in 24 d. Both the presence of Fe(II) and Co(II) facilitated the Mn(II) immobilization and increased Mn(II) removal by 19-31% due to the enhanced peroxidase activity and the increased Mn accumulating in roots The complete removal of Mn from AES was found in the presence of Fe(II) at 2 mg L-1 or Co(II) at 0.5 mg L-1 and more than 51% accumulated Mn in the roots was stored in the vacuole and cytoplasm. BioMnOx was found on the surface of the roots, revealing that rhizofiltration, rhizospheric plaque/biofilm formation, and Mn biogeochemical cycle exert synergic effects on Mn(II) immobilization. The findings of the present study demonstrate the feasibility of using P. stratiotes in the treatment of aqueous EMR solutions and the presence of an appropriate amount of bio-available Fe and Co can promote the removal of Mn(II) and NH4+-N.


Asunto(s)
Araceae , Biodegradación Ambiental , Hierro , Manganeso , Rizosfera , Manganeso/metabolismo , Araceae/metabolismo , Hierro/metabolismo , Contaminantes Químicos del Agua/metabolismo , Compuestos de Amonio/metabolismo
4.
CNS Neurosci Ther ; 30(3): e14660, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38439697

RESUMEN

OBJECTIVES: This study aimed to investigate the temporal dynamics of brain activity and characterize the spatiotemporal specificity of transitions and large-scale networks on short timescales in acute mild traumatic brain injury (mTBI) patients and those with cognitive impairment in detail. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 71 acute mTBI patients and 57 age-, sex-, and education-matched healthy controls (HCs). A hidden Markov model (HMM) analysis of rs-fMRI data was conducted to identify brain states that recurred over time and to assess the dynamic patterns of activation states that characterized acute mTBI patients and those with cognitive impairment. The dynamic parameters (fractional occupancy, lifetime, interval time, switching rate, and probability) between groups and their correlation with cognitive performance were analyzed. RESULTS: Twelve HMM states were identified in this study. Compared with HCs, acute mTBI patients and those with cognitive impairment exhibited distinct changes in dynamics, including fractional occupancy, lifetime, and interval time. Furthermore, the switching rate and probability across HMM states were significantly different between acute mTBI patients and patients with cognitive impairment (all p < 0.05). The temporal reconfiguration of states in acute mTBI patients and those with cognitive impairment was associated with several brain networks (including the high-order cognition network [DMN], subcortical network [SUB], and sensory and motor network [SMN]). CONCLUSIONS: Hidden Markov models provide additional information on the dynamic activity of brain networks in patients with acute mTBI and those with cognitive impairment. Our results suggest that brain network dynamics determined by the HMM could reinforce the understanding of the neuropathological mechanisms of acute mTBI patients and those with cognitive impairment.


Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Humanos , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Neuropatología
5.
BMC Med Imaging ; 24(1): 58, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443786

RESUMEN

BACKGROUND: MULTIPLEX is a single-scan three-dimensional multi-parametric MRI technique that provides 1 mm isotropic T1-, T2*-, proton density- and susceptibility-weighted images and the corresponding quantitative maps. This study aimed to investigate its feasibility of clinical application in Parkinson's disease (PD). METHODS: 27 PD patients and 23 healthy control (HC) were recruited and underwent a MULTIPLEX scanning. All image reconstruction and processing were automatically performed with in-house C + + programs on the Automatic Differentiation using Expression Template platform. According to the HybraPD atlas consisting of 12 human brain subcortical nuclei, the region-of-interest (ROI) based analysis was conducted to extract quantitative parameters, then identify PD-related abnormalities from the T1, T2* and proton density maps and quantitative susceptibility mapping (QSM), by comparing patients and HCs. RESULTS: The ROI-based analysis revealed significantly decreased mean T1 values in substantia nigra pars compacta and habenular nuclei, mean T2* value in subthalamic nucleus and increased mean QSM value in subthalamic nucleus in PD patients, compared to HCs (all p values < 0.05 after FDR correction). The receiver operating characteristic analysis showed all these four quantitative parameters significantly contributed to PD diagnosis (all p values < 0.01 after FDR correction). Furthermore, the two quantitative parameters in subthalamic nucleus showed hemicerebral differences in regard to the clinically dominant side among PD patients. CONCLUSIONS: MULTIPLEX might be feasible for clinical application to assist in PD diagnosis and provide possible pathological information of PD patients' subcortical nucleus and dopaminergic midbrain regions.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Enfermedad de Parkinson , Humanos , Estudios de Factibilidad , Enfermedad de Parkinson/diagnóstico por imagen , Protones , Dopamina
6.
Quant Imaging Med Surg ; 14(1): 194-207, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223049

RESUMEN

Background: Cortical spreading depression (CSD) has been considered the prominent theory for migraine with aura (MwA). However, it is also argued that CSD can exist in patients in a silent state, and not manifest as aura. Thus, the MwA classification based on aura may be questionable. This study aimed to capture whole-brain connectome-based imaging markers with identifiable signatures for MwA and migraine without aura (MwoA). Methods: A total of 88 migraine patients (32 MwA) and 49 healthy controls (HC) underwent a diffusion tensor imaging and resting-state functional magnetic resonance imaging scan. The whole-brain structural connectivity (SC) and functional connectivity (FC) analysis was employed to extract imaging features. The extracted features were subjected to an all-relevant feature selection process within cross-validation loops to pinpoint attributes demonstrating substantial efficacy for patient categorization. Based on the identified features, the predictive ability of the random forest classifiers constructed with the 88 migraine patients' sample was tested using an independent sample of 32 migraine patients (eight MwA). Results: Compared to MwoA and HC, MwA showed two reduced SC and six FC (five increased and one reduced) features [all P<0.01, after false discovery rate (FDR) correction], involving frontal areas, temporal areas, visual areas, amygdala, and thalamus. A total of four imaging features were significantly correlated with clinical rating scales in all patients (r=-0.38 to 0.47, P<0.01, after FDR correction). The predictive ability of the random forest classifiers achieved an accuracy of 78.1% in the external sample to identify MwA. Conclusions: The whole-brain connectivity features in our results may serve as connectome-based imaging markers for MwA identification. The alterations of SC and FC strength provide possible evidence in further understanding the heterogeneity and mechanism of MwA which may help for patient-specific decision-making.

7.
Quant Imaging Med Surg ; 14(1): 305-315, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223055

RESUMEN

Background: Menstrual migraine without aura (MRM) is common in female migraineurs and is closely related to cerebral functional abnormalities. However, whether the whole brain networks and directional functional connectivity of MRM patients are altered remains unclear. The purpose of this study was to detect the alterations of resting-state functional networks and directional functional connectivity between MRM and non-menstrual migraine without aura (NMM) patients using functional magnetic resonance imaging (fMRI) with degree centrality (DC) and Granger causality analysis (GCA) methods. Methods: In this retrospective and cross-sectional study, 45 MRM and 40 NMM patients (matched in age, gender, and years of education) were recruited in the study between May 2018 and June 2022. All participants had undergone resting-state fMRI scanning at the Neurology and Pain Outpatient Department of Nanjing First Hospital. Their brain functions were analyzed in terms of DC and GCA, with the significant threshold at voxel level P<0.01 and cluster level P<0.05, Gaussian random field corrected. Correlation analysis was adopted to assess the relationships between the fMRI results and clinical features (P<0.05, Bonferroni corrected). Results: Compared with those in the NMM group, MRM patients showed decreased DC in the right insula (T=-4.253). Using the right insula as the seed region, patients with MRM demonstrated enhanced effective connectivity from the right insula to the ipsilateral middle temporal gyrus (T=4.138) and contralateral superior temporal gyrus (T=3.523). Furthermore, the MRM group also showed decreased effective connectivity from several brain regions to the right insula, which included the right inferior occipital gyrus (T=-4.498), left middle frontal gyrus (T=-4.879), right precuneus (T=-4.644), and left inferior parietal gyrus (T=-4.113). The average Self-rating Anxiety Scale score of the MRM group was significantly higher than that of the NMM group [P=0.032, 95% confidence interval (CI): 0.363-7.761]. In the MRM group, disease duration was negatively correlated with the mean value of DC in right insula (r=-0.428, P=0.01). Conclusions: The present research demonstrated that patients with MRM have disruption in insula resting-state functional networks. Disrupted networks contained regions associated with cognitive processes, emotional perception, and migraine attack in MRM patients. These results may improve our comprehension of the neuromechanism of menstrually-related migraine.

8.
J Agric Food Chem ; 72(2): 1178-1189, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38183288

RESUMEN

3-Fucosyllactose (3-FL) is an important oligosaccharide and nutrient in breast milk that can be synthesized in microbial cells by α-1,3-fucosyltransferase (α-1,3-FucT) using guanosine 5'-diphosphate (GDP)-l-fucose and lactose as substrates. However, the catalytic efficiency of known α-1,3-FucTs from various sources was limited due to their low solubility. To enhance the microbial production of 3-FL, the efficiencies of α-1,3-FucTs were evaluated and in Bacillus subtilis (B. subtilis) chassis cells that had been endowed with a heterologous synthetic pathway for GDP-l-fucose, revealing that the activity of FucTa from Helicobacter pylori (H. pylori) was higher than that of any of other reported homologues. To further improve the catalytic performance of FucTa, a rational design approach was employed, involving intracellular evaluation of the mutational sites of M32 obtained through directed evolution, analysis of the ligand binding site diversity, and protein structure simulation. Among the obtained variants, the FucTa-Y218 K variant exhibited the highest 3-FL yield, reaching 7.55 g/L in the shake flask growth experiment, which was 3.48-fold higher than that achieved by the wild-type enzyme. Subsequent fermentation optimization in a 5 L bioreactor resulted in a remarkable 3-FL production of 36.98 g/L, highlighting the great prospects of the designed enzyme and the strains for industrial applications.


Asunto(s)
Bacillus subtilis , Fucosiltransferasas , Trisacáridos , Humanos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Trisacáridos/metabolismo , Fucosa/metabolismo , Escherichia coli/metabolismo , Oligosacáridos/metabolismo
9.
Clin Transl Med ; 13(7): e1336, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461263

RESUMEN

Intense ultraviolet (UV) exposure can cause phototoxic reactions, such as skin inflammation, resulting in injury. UV is a direct cause of DNA damage, but the mechanisms underlying transcriptional regulation within cells after DNA damage are unclear. The bioinformatics analysis of transcriptome sequencing data from UV-irradiated and non-UV-irradiated skin showed that transcription-related proteins, such as HSF4 and COIL, mediate cellular response to UV irradiation. HSF4 and COIL can form a complex under UV irradiation, and the preference for binding target genes changed because of the presence of a large number of R-loops in cells under UV irradiation and the ability of COIL to recognize R-loops. The regulation of target genes was altered by the HSF4-COIL complex, and the expression of inflammation and ageing-related genes, such as Atg7, Tfpi, and Lims1, was enhanced. A drug screen was performed for the recognition sites of COIL and R-loop. N6-(2-hydroxyethyl)-adenosine can competitively bind COIL and inhibit the binding of COIL to the R-loop. Thus, the activation of downstream inflammation-related genes and inflammatory skin injury was inhibited.


Asunto(s)
Estructuras R-Loop , Piel , Regulación de la Expresión Génica , Factores de Transcripción del Choque Térmico/metabolismo , Inflamación/genética , Inflamación/metabolismo , Piel/metabolismo , Transcriptoma
10.
Nat Microbiol ; 8(7): 1330-1338, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308591

RESUMEN

Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Archaea/genética , Vías Biosintéticas , Filogenia , Guanosina Trifosfato , Adenosina Trifosfato
11.
Sports Med Open ; 9(1): 27, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149504

RESUMEN

Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.

12.
Food Funct ; 14(6): 2857-2869, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36880662

RESUMEN

Immunoglobulin (Ig)E-associated mast cell (MC) activation triggers pro-inflammatory signals that underlie type I allergic diseases. Here, we examined the effects of the natural isoflavone formononetin (FNT) on IgE-mediated MC activation and associated mechanisms of high-affinity IgE receptor (FcεRI) signal inhibition. The effects of FNT on the mRNA expression of inflammatory factors, release of histamine and ß-hexosaminidase (ß-hex), and expression of signaling proteins and ubiquitin (Ub)-specific proteases (USPs) were analyzed in two sensitized/stimulated MC lines. FcεRIγ-USP interactions were detected by co-immunoprecipitation (IP). FNT dose-dependently inhibited ß-hex activity, histamine release, and inflammatory cytokine expression in FcεRI-activated MCs. FNT suppressed IgE-induced NF-κB and MAPK activity in MCs. The oral administration of FNT attenuated passive cutaneous anaphylaxis (PCA) reactions and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) reactions in mice. FNT reduced the FcεRIγ chain expression, via increased proteasome-mediated degradation, and induced FcεRIγ ubiquitination by inhibiting USP5 and/or USP13. FNT and USP inhibition may be useful for suppressing IgE-mediated allergic diseases.


Asunto(s)
Anafilaxia , Isoflavonas , Ratones , Animales , Receptores de IgE/genética , Receptores de IgE/metabolismo , Mastocitos , Transducción de Señal , Anafilaxia/tratamiento farmacológico , Inmunoglobulina E/metabolismo , Isoflavonas/farmacología , Isoflavonas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Degranulación de la Célula
13.
Front Immunol ; 14: 1111369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911717

RESUMEN

Extracellular adenosine (eADO) signaling has emerged as an increasingly important regulator of immune responses, including tumor immunity. eADO is mainly produced from extracellular ATP (eATP) hydrolysis. eATP is rapidly accumulated in the extracellular space following cell death or cellular stress triggered by hypoxia, nutrient starvation, or inflammation. eATP plays a pro-inflammatory role by binding and activating the P2 purinergic receptors (P2X and P2Y), while eADO has been reported in many studies to mediate immunosuppression by activating the P1 purinergic receptors (A1, A2A, A2B, and A3) in diverse immune cells. Consequently, the hydrolysis of eATP to eADO alters the immunosurveillance in the tumor microenvironment (TME) not only by reducing eATP levels but also by enhancing adenosine receptor signaling. The effects of both P1 and P2 purinergic receptors are not restricted to immune cells. Here we review the most up-to-date understanding of the tumor adenosinergic system in all cell types, including immune cells, tumor cells, and stromal cells in TME. The potential novel directions of future adenosinergic therapies in immuno-oncology will be discussed.


Asunto(s)
Neoplasias , Receptores Purinérgicos P2 , Humanos , Adenosina/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P1/metabolismo , Microambiente Tumoral
14.
Front Nutr ; 10: 1132527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960200

RESUMEN

In the production of soy sauce-aroma type baijiu (SSAB), the quality of base liquor significantly affects the finished liquor's quality. Moreover, low-quality liquor may cause health problems. The different quality grades of base liquor were analyzed to investigate the relationship between the quality and the key compounds in SSAB. In this study, samples were evaluated by the sensory and further analyzed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) coupled with electronic nose (E-nose). First, by sensory evaluation, the sauce, floral and fruity, fermented aromas and taste indicators (softness, fullness, harmony, purity and persistence) were positively correlated with the quality grade of the base liquor. The E-nose could distinguish the different quality grades of base liquor well. Second, differential compounds were identified via untargeted metabolome based on the HS-SPME-GC-MS. 16 common differential compounds were shared in the base liquor from different fermentation rounds, including 11 esters, 1 alcohol, 2 aldehydes and 2 ketones. It was found that the higher the quality grade of the base liquor, the richer the content of aromatics, alcohols, aldehydes and ketones. The principal component analysis (PCA) biplots of the differential compounds in the different quality grades of base liquor indicated that the superior-grade base liquor has a strong fruity aroma. By correlation analysis of the differential compounds and sensors responses of E-nose, furfuryl ethyl ether, butanoic acid ethyl ester, isopentyl hexanoate, nonanoic acid ethyl ester and 3-methyl-1-butanol had a significant effect on the response intensity of E-nose sensors. In the present study, the key differential compounds between the different quality grades of base liquor were identified, and the sensory differences between the base liquor were digitized.

15.
J Pharmacol Exp Ther ; 384(1): 52-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35609922

RESUMEN

Circular RNAs (circRNAs) are covalently closed RNA produced by back-splicing. CircRNAs have been considered as a type of noncoding RNAs for a long time. However, recent studies have shown that circRNAs can be translated into functional proteins. Proteins specifically encoded by circRNAs have been proved to play important roles in cancer pathology. In this review, we introduce the methods commonly used to identify and validate circRNA translation in detail. We also describe the major mechanisms driving the translation of these circRNAs. In addition, we summarize the main functions of the circRNA-encoded proteins in both physiologic and pathologic conditions. Finally, we discuss the therapeutic potential and challenges in the usage of synthetic translatable circRNAs. This brief review highlights recent discoveries made in this field and the progress of therapy based on translatable circRNAs. SIGNIFICANCE STATEMENT: Understanding the translation of circRNA could facilitate the identification of novel drug targets in various diseases. Moreover, some circRNA encoded proteins were demonstrated to have therapeutic functions in cancer. The application of synthetic circRNAs as carriers to achieve stable protein expression in vitro and in vivo has tremendous therapeutic potential.


Asunto(s)
Neoplasias , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , ARN/genética , Empalme del ARN , Neoplasias/genética
16.
J Integr Plant Biol ; 65(1): 167-187, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36107150

RESUMEN

Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.


Asunto(s)
Glycine max , Hierro , Glycine max/metabolismo , Hierro/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Transporte Biológico , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Nat Commun ; 13(1): 7661, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496426

RESUMEN

Key to the success of legumes is the ability to form and maintain optimal symbiotic nodules that enable them to balance the trade-off between symbiosis and plant growth. Cytokinin is essential for homeostatic regulation of nodulation, but the mechanism remains incompletely understood. Here, we show that a B-type response regulator GmRR11d mediates systemic inhibition of nodulation. GmRR11d is induced by rhizobia and low level cytokinin, and GmRR11d can suppress the transcriptional activity of GmNSP1 on GmNIN1a to inhibit soybean nodulation. GmRR11d positively regulates cytokinin response and its binding on the GmNIN1a promoter is enhanced by cytokinin. Intriguingly, rhizobial induction of GmRR11d and its function are dependent upon GmNARK that is a CLV1-like receptor kinase and inhibits nodule number in shoots. Thus, GmRR11d governs a transcriptional program associated with nodulation attenuation and cytokinin response activation essential for systemic regulation of nodulation.


Asunto(s)
Fabaceae , Rhizobium , Simbiosis/fisiología , Rhizobium/metabolismo , Citocininas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fabaceae/metabolismo , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Nódulos de las Raíces de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
J Headache Pain ; 23(1): 131, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195842

RESUMEN

BACKGROUND: Migraine aura is a transient, fully reversible visual, sensory, or other central nervous system symptom that classically precedes migraine headache. This study aimed to investigate cerebral blood flow (CBF) alterations of migraine with aura patients (MwA) and without aura patients (MwoA) during inter-ictal periods, using arterial spin labeling (ASL). METHODS: We evaluated 88 migraine patients (32 MwA) and 44 healthy control subjects (HC) who underwent a three-dimensional pseudo-continuous ASL MRI scanning. Voxel-based comparison of normalized CBF was conducted between MwA and MwoA. The relationship between CBF variation and clinical scale assessment was further analyzed. The mean CBF values in brain regions showed significant differences were calculated and considered as imaging features. Based on these features, different machine learning-based models were established to differentiate MwA and MwoA under five-fold cross validation. The predictive ability of the optimal model was further tested in an independent sample of 30 migraine patients (10 MwA). RESULTS: In comparison to MwoA and HC, MwA exhibited higher CBF levels in the bilateral superior frontal gyrus, bilateral postcentral gyrus and cerebellum, and lower CBF levels in the bilateral middle frontal gyrus, thalamus and medioventral occipital cortex (all p values < 0.05). These variations were also significantly correlated with multiple clinical rating scales about headache severity, quality of life and emotion. On basis of these CBF features, the accuracies and areas under curve of the final model in the training and testing samples were 84.3% and 0.872, 83.3% and 0.860 in discriminating patients with and without aura, respectively. CONCLUSION: In this study, CBF abnormalities of MwA were identified in multiple brain regions, which might help better understand migraine-stroke connection mechanisms and may guide patient-specific decision-making.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Migraña con Aura , Migraña sin Aura , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Migraña con Aura/diagnóstico por imagen , Migraña sin Aura/diagnóstico por imagen , Calidad de Vida , Marcadores de Spin
19.
J Cell Mol Med ; 26(21): 5391-5402, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36172879

RESUMEN

The dysregulation of lipid metabolic pathways (cholesterol uptake and efflux) in macrophages results in the formation of lipid-dense macrophages, named foam cells, that participate in plaque formation. NPY binding to NPY receptors in macrophages can modulate cell functions and affect the process of atherosclerotic plaques. The present study aimed to determine whether NPY affects the formation of macrophage-derived foam cells and its underlying mechanisms in macrophages. THP-1-derived macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) and treated with different concentrations of NPY. We analysed the relative levels of proteins related to cholesterol uptake and efflux. We found that NPY effectively increased cholesterol uptake and intracellular cholesterol content via the Y1 and Y5 receptors, and this effect was blocked by Y1 and Y5 antagonists. Mechanistically, NPY enhanced the expression of SRA and CD36 via the PKC/PPARγ pathways, promoting macrophage cholesterol uptake. Moreover, NPY significantly decreased cholesterol efflux to the extracellular cholesterol acceptors ApoA1 and HDL in macrophages. NPY mediated decreases in ABCA1, ABCG1 and SR-BI expression through the inhibition of the JAK/STAT3 pathways. Our results suggest that NPY binding to the Y1 and Y5 receptors enhances foam cell formation by regulating cholesterol uptake and efflux in macrophages.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Células Espumosas/metabolismo , Neuropéptido Y/farmacología , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Antígenos CD36/metabolismo , Aterosclerosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...