Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(48): 53475-53490, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413755

RESUMEN

Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Sulfuro de Hidrógeno , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos de Sulfhidrilo
2.
Br J Pharmacol ; 177(12): 2743-2764, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31976548

RESUMEN

BACKGROUND AND PURPOSE: Tetramethylpyrazine (TMP) was originally isolated from the traditional Chinese herb ligusticum and the fermented Japanese food natto and has since been synthesized. TMP has a long history of beneficial effects in the treatment of many cardiovascular diseases. Here we have evaluated the therapeutic effects of TMP on pulmonary hypertension (PH) in animal models and in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH). EXPERIMENTAL APPROACH: Three well-defined models of PH -chronic hypoxia (10% O2 )-induced PH (HPH), monocrotaline-induced PH (MCT-PH) and Sugen 5416/hypoxia-induced PH (SuHx-PH) - were used in Sprague-Dawley rats, and assessed by echocardiography, along with haemodynamic and histological techniques. Primary cultures of rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to study intracellular calcium levels. Western blots and RT-qPCR assays were also used. In the clinical cohort, patients with PAH or CTEPH were recruited. The effects of TMP were evaluated in all systems. KEY RESULTS: TMP (100 mg·kg-1 ·day-1 ) prevented rats from developing experimental PH and ameliorated three models of established PH: HPH, MCT-PH and SuHx-PH. The therapeutic effects of TMP were accompanied by inhibition of intracellular calcium homeostasis in PASMCs. In a small cohort of patients with PAH or CTEPH, oral administration of TMP (100 mg, t.i.d. for 16 weeks) increased the 6-min walk distance and improved the 1-min heart rate recovery. CONCLUSION AND IMPLICATIONS: Our results suggest that TMP is a novel and inexpensive medication for treatment of PH. Clinical trial is registered with www.chictr.org.cn (ChiCTR-IPR-14005379).


Asunto(s)
Hipertensión Pulmonar , Preparaciones Farmacéuticas , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina , Miocitos del Músculo Liso , Arteria Pulmonar , Pirazinas , Ratas , Ratas Sprague-Dawley
3.
Am J Physiol Cell Physiol ; 318(3): C555-C569, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31940248

RESUMEN

Unlike the pulmonary artery (PA), the pathophysiological changes of the pulmonary vein (PV) in the development of pulmonary hypertension (PH) remain largely unknown. In this study, we comprehensively investigated the structural and functional changes in the PV isolated from the chronic hypoxia (CH; 10% O2, 21 days)-induced PH rat model (CHPH). Results showed that CH caused an increase in right ventricular pressure but did not affect the mean pulmonary venous pressure and the left atrial pressure. Similar to the PA, vascular lumen stenosis and medial thickening were also observed in the intrapulmonary veins isolated from the CHPH rats. Notably, CH induced more severe loss in the endothelium of intrapulmonary veins than the arteries. Then, the contractile response to 5-HT and U46619 was significantly greater in the intrapulmonary small veins (ISPV) and arteries (ISPA) isolated from CHPH rats than those from normoxic rats but not in the extrapulmonary and intrapulmonary large veins. Treatment with nifedipine (Nif), SKF96365 (SKF), or ryanodine and caffeine either partially attenuated (Nif) or dramatically abolished (SKF or ryanodine and caffeine) 5-HT-induced maximal contraction in ISPV from both normoxic and CHPH rats. Because of the severe loss of endothelium in the PV of CHPH rats, the decrease in acetylcholine (ACh)-induced endothelium-dependent relaxation was significantly larger in ISPV than ISPA, whereas the sodium nitroprusside-induced endothelium-independent relaxation was not altered in both ISPA and ISPV. In conclusion, our results provide fundamental data to comprehensively define the PV system in CHPH rat model.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Venas Pulmonares/citología , Venas Pulmonares/fisiología , Animales , Células Cultivadas , Enfermedad Crónica , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipoxia/patología , Masculino , Técnicas de Cultivo de Órganos , Venas Pulmonares/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vasoconstrictores/toxicidad , Vasodilatadores/farmacología
4.
Exp Physiol ; 103(11): 1532-1542, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30070749

RESUMEN

NEW FINDINGS: What is the central question of this study? In this study, by using motor vehicle exhaust (MVE) exposure with or without lipopolysaccharide (LPS) instillation, we established, evaluated and compared MVE, LPS and MVE+LPS treatment-induced chronic obstructive pulmonary disease (COPD) models in mice. What is the main finding and its importance? Our study demonstrated that the combination of chronic exposure to MVE with early LPS instillation can establish a mouse model with some features of COPD, which will allow researchers to investigate the underlying molecular mechanisms linking air pollution and COPD pathogenesis. ABSTRACT: Although it is well established that motor vehicle exhaust (MVE) has a close association with the occurrence and exacerbation of chronic obstructive pulmonary disease (COPD), very little is known about the combined effects of MVE and intermittent or chronic subclinical inflammation on COPD pathogenesis. Therefore, given the crucial role of inflammation in the development of COPD, we wanted to establish an animal model of COPD using both MVE exposure and airway inflammation, which could mimic the clinical pathological changes observed in COPD patients and greatly benefit the study of the molecular mechanisms of COPD. In the present study, we report that mice undergoing chronic exposure to MVE and intratracheal instillation of lipopolysaccharide (LPS) successfully established COPD, as characterized by persistent air flow limitation, airway inflammation, inflammatory cytokine production, emphysema and small airway remodelling. Moreover, the mice showed significant changes in ventricular and vascular pathology, including an increase in right ventricular pressure, right ventricular hypertrophy and remodelling of pulmonary arterial walls. We have thus established a new mouse COPD model by combining chronic MVE exposure with early intratracheal instillation of LPS, which will allow us to study the relationship between air pollution and the development of COPD and to investigate the underlying molecular mechanisms.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Lipopolisacáridos/efectos adversos , Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
5.
Br J Pharmacol ; 174(22): 4155-4172, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849593

RESUMEN

BACKGROUND AND PURPOSE: Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH: Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3 weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. KEY RESULTS: Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. CONCLUSIONS AND IMPLICATIONS: Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.


Asunto(s)
Cloroquina/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/fisiopatología , Vasodilatadores/uso terapéutico , Animales , Canales de Calcio/fisiología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cloroquina/farmacología , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoxia/complicaciones , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiología , Ratas Sprague-Dawley , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...