Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anal Methods ; 16(16): 2569-2584, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38606427

RESUMEN

The affinity sites of cadmium (Cd(II)) when binding to cysteine (Cys) and glutathione (GSH) were studied via thermodynamics and nuclear magnetic resonance (NMR) spectroscopy methods. The results showed that the Cd(II) binding sites of Cys and GSH were -SH (exothermic), -NH2 (endothermic) and -COOH (endothermic). The thermodynamic behaviour of Cd(II) binding to Cys/GSH in boric acid and HEPES buffers differed, with the former being mainly endothermic and the latter mainly exothermic. It could be inferred that, in the boric acid system, the main binding site of Cd(II) with Cys and GSH is changed from -SH in HEPES to -COOH and -NH2 in boric acid. This was confirmed by the results of NMR experiments of Cd(II) with Cys/GSH. 1D 1H-NMR experiments showed that, after the combination of Cd(II) and Cys, the changes in the chemical shifts and peak strengths of protons near the -SH group for the reaction in HEPES were greater than when boric acid buffer was used. Changes in the chemical shift and peak strength of the -NH2 protons due to the binding of Cd(II) to GSH were evident in the boric acid buffer but not in HEPES. The screening of functional monomers is very important in the process of preparation of cadmium ion-imprinted materials. This research provides important theoretical and experimental guidance for the screening of functional monomers.

2.
Mikrochim Acta ; 191(4): 172, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433173

RESUMEN

A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.

3.
Biosens Bioelectron ; 251: 116127, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382272

RESUMEN

Owing to advantage in high sensitivity and fast response, aptamer based electrochemical biosensors have attracted much more attention. However, inappropriate interfacial engineering strategy leads to poor recognition performance, which ascribe to the following factors of immobilized oligonucleotide strand including steric hindrance, interchain entanglement, and unfavorable conformation. In this work, we proposed a DNA tetrahedron based diblock aptamer immobilized strategy for the construction of label-free electrochemical biosensor. The diblock aptamer sequence is composite of T-rich anchor domain and recognition domain, where T-rich domain enabling anchored on the edge of DNA tetrahedron via Hoogsteen hydrogen bond at neutral condition. The DNA tetrahedron scaffold offers an appropriate lateral space for target recognition of diblock aptamer. More importantly, this trivalent aptamer recognition interface can be regenerated by simply adjusting the pH environment to alkaline, resulting in the dissociation of diblock aptamer. Under the optimum condition, proposed electrochemical aptasensor manifested a satisfied sensitivity for aminoglycosides antibiotic, kanamycin with a limit of detection of 0.69 nM, which is 45-fold lower than traditional Au-S immobilization strategy. Moreover, the proposed aptasensor had also successfully been extended to ampicillin detection by changing the sequence of recognition domain in diblock aptamer. This work paves a new way for the rational design of aptamer-based electrochemical sensor.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Antibacterianos , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , ADN/química , Kanamicina , Técnicas Electroquímicas , Límite de Detección , Oro/química
4.
Food Funct ; 15(1): 265-283, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38059679

RESUMEN

Hyperlipidemia is a common clinical disorder of lipid metabolism in modern society and is considered to be one of the major risk factors leading to cardiovascular-related diseases. Germinated brown rice (GBR) is a typical whole grain food. The lipid-lowering effect of GBR has received increasing attention, but its mechanism of action is not fully understood. The gut microbiota has been proposed as a novel target for the treatment of hyperlipidemia. The aim of this study was to investigate the effects of GBR on the gut microbiota and lipid metabolism in high-fat diet (HFD)-fed C57BL/6J mice. The effect of GBR on hyperlipidemia was evaluated by measuring blood lipid levels and by pathological examination. The gut microbiota was detected by 16S rRNA sequencing, and the protein and mRNA expression levels involved in cholesterol metabolism were detected by western blotting and RT-qPCR to find potential correlations. The results showed that GBR supplementation could effectively reduce the levels of TC, TG, LDL-C and HDL-C in the serum and alleviate the excessive accumulation of fat droplets caused by HFD. Moreover, GBR intervention improved HFD-fed gut microbiota disorder via increasing the diversity of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio, and improving gut barrier damage. In addition, GBR could inhibit endogenous cholesterol synthesis and promote cholesterol transport and excretion. These findings suggest that GBR may be a competitive candidate for the development of functional foods to prevent abnormal lipid metabolism.


Asunto(s)
Microbioma Gastrointestinal , Hipercolesterolemia , Hipertrigliceridemia , Oryza , Animales , Ratones , Colesterol , Dieta Alta en Grasa/efectos adversos , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Lípidos , Ratones Endogámicos C57BL , Oryza/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Granos Enteros
5.
Bioelectromagnetics ; 45(2): 82-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37860924

RESUMEN

Conductive dental implants are commonly used in restorative therapy to replace missing teeth in patients. Ensuring the radiofrequency (RF) safety of these patients is crucial when performing 7 T magnetic resonance scans of their heads. This study aimed to investigate RF-induced heating inside the human head with dental implants at 7 T. Dental implants and their attachments were fabricated and integrated into an anatomical head model, creating different measurement configurations (MCs). Numerical simulations were conducted using a 7 T transmit coil loaded with the anatomical head model, both with and without dental implants. The maximum temperatures inside the head for various MCs were computed using the maximum permissible input powers (MPIPs) obtained without dental implants and compared with published limits. Additionally, the MPIPs with dental implants were calculated for scenarios where the temperature limits were exceeded. The maximum temperatures observed inside the head ranged from 38.4°C to 39.6°C. The MPIPs in the presence of dental implants were 81.9%-97.3% of the MPIPs in the absence of dental implants for scenarios that exceeded the regulatory limit. RF-induced heating effect of the dental implants was not significant. The safe scanning condition in terms of RF exposure was achievable for patients with dental implants. For patients with conductive dental implants of unknown configuration, it is recommended to reduce the input power by 18.1% of MPIP without dental implants to ensure RF safety.


Asunto(s)
Implantes Dentales , Calor , Humanos , Calefacción , Temperatura , Imagen por Resonancia Magnética , Ondas de Radio/efectos adversos , Fantasmas de Imagen
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123807, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154306

RESUMEN

Due to the threat of lead pollution to health, environmental and food safety, developing simple and fast detection methods is highly required. Whereas, traditional single-mode probe suffers from limited application scenario. In this study, a colorimetric and fluorometric dual-mode probe for Pb2+ determination was constructed by using bifunctional G-quadruplex-hemin complex. In this dual-mode probe, enzyme strand and substrate strand of 8-17 DNAzyme are labeled with G-quadruplex-hemin complex and fluorophore, respectively. In the absence of Pb2+, the self-assembly of enzyme strand and substrate strand inhibits intrinsic mimic peroxidase of G-quadruplex-hemin complex by base-pairing, which also quench the fluorescence via in proximity effect. When the DNAzyme is activated by Pb2+, the quenched fluorescence is restored as well as the inherent peroxidase mimetic activity, leading to dual signal output. Under optimal conditions, this dual-mode probe exhibit a good linear relationship between logarithm of Pb2+ concentration and signal difference within the range from 1.5 nM to 20 nM and 0.5 nM to 10 nM for colorimetric and fluorescence mode, respectively. The detection limits for the corresponding mode were estimated to be 1.29 nM and 0.16 nM, respectively. This dual-mode probe also successfully applied for the spiked river water assay with satisfactory recovery in the range of 93.2 %-115.3 %. This work paves a new way for DNAzyme based dual-mode probe construction.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Plomo , Colorimetría/métodos , Colorantes , Peroxidasas , Técnicas Biosensibles/métodos
7.
Technol Cancer Res Treat ; 22: 15330338231214449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964574

RESUMEN

BACKGROUND: To investigate the optimal radiotherapy plans for synchronous bilateral breast cancer (SBBC) patients receiving postmastectomy radiotherapy (PMRT), including regional lymph node irradiation (RNI). METHODS: For 10 SBBC patients who underwent bilateral mastectomy and received bilateral PMRT with RNI, 3 integrally optimized plans with a single isocenter were designed for each patient in this retrospective study: intensity-modulated radiation therapy (IMRT) with 9 fixed beams (9F-IMRT), volumetric-modulated arc therapy (VMAT) with 2 pairs of half arcs (2F-VMAT), VMAT with 2 pairs of outer tangential arcs and 1 pair of 200-degree arcs (3F-VMAT). The paired t-test (in the case of normal variables) and Friedman's test (in the case of nonnormal variables) were applied to compare the planning target volumes (PTVs) and organs at risk (OARs) values of the 3 techniques. RESULTS: The 3 techniques provided adequate target dose coverage and comparable results for PTVs. For OARs, 3F-VMAT yielded the lowest mean or median values of the left lung (15.02 ± 1.57 Gy) and right lung (14.91 ± 1.14 Gy), heart (6.19 (1.96) Gy), coronary artery (15.96 ± 5.76 Gy) and liver (8.10 ± 2.70 Gy) which were significantly different from those of 9F-IMRT and 2F-VMAT. The percentages of volume at various doses (V5, V10, V20, and V30) of 3F-VMAT plans were also lower than or comparable with those of 9F-IMRT and 2F-VMAT. The monitor units (MUs) of 3F-VMAT were 31% higher than those of 9F-IMRT and comparable with those of 2F-VMAT; however, there were time savings and halved beam-on times (BOTs) compared to 9F-IMRT. CONCLUSIONS: The 3F-VMAT plan yielded comparable target coverage compared with 9F-IMRT and 2F-VMAT, was superior in dose sparing of normal tissues and enabled shorter BOTs, improving treatment efficiency. In our research, 3F-VMAT was the optimal radiotherapy technique for SBBC patients receiving PMRT including RNI.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/etiología , Estudios Retrospectivos , Mastectomía , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación , Ganglios Linfáticos
8.
Pract Radiat Oncol ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967748

RESUMEN

PURPOSE: Flattening filter-free (FFF)-based volumetric modulated arc therapy (VMAT) has been shown to be feasible and significantly improves treatment efficiency and lung protection for synchronous bilateral breast irradiation (SBBI). This research compared the commonly used VMAT field arrangements using FFF beams. METHODS: Twenty-eight patients underwent SBBI were retrospectively enrolled to design irradiation plans using tangential arc VMAT (taVMAT), half arc VMAT (haVMAT), and large arc VMAT (laVMAT). Dosimetric and delivery parameters of all designed plans were recorded and compared. RESULTS: Comparable target volume coverage was observed for all field arrangements. taVMAT significantly reduced the dose to spinal cord and the volume covered by 5 Gy (V5Gy) and V7Gy of the lungs while decreasing the conformity index of the target volume. It also increased the volume covered by 105% of the prescription dose (V105%) and V107% of the target volume. haVMAT considerably decreased V20 Gy and V30 Gy of the lungs, mean dose (Dmean) and V30 Gy of the heart and the liver. It also notably reduced Dmean and V40 Gy of the left anterior descending coronary artery while increasing the beam-on time. laVMAT significantly reduced the mean treatment time (range, 113-117 seconds) compared with the other field arrangements. CONCLUSIONS: There were distinct differences in various dosimetric and delivery parameters for different field arrangements, highlighting the importance of selecting the appropriate field arrangement based on specific treatment goals and considerations. This study contributes valuable insights into the use of FFF-based VMAT techniques in SBBI.

9.
AMB Express ; 13(1): 113, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848696

RESUMEN

Microbial flora plays an important role in microorganism-enhanced technology. The pollutant degradation ability and viable counts of these agents are crucial to guarantee their practical application. In this study, an efficient pollutant-degrading microbial flora was screened, its medium components and culture conditions were optimized, and its effect was verified in zeolite trickling filter towers. After a 24 h culture under the optimal conditions, the viable count reached 4.76 × 109 cfu/mL, with the degradation rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) increased to 93.5%, 100%, 68.3%, 32.6%, and 85%, respectively. After optimizing the feeding strategy, the concentration of viable bacteria reached 5.80 × 109 cfu/mL. In the application effect verification experiment, the degradation rates of NH4+-N, TN, TP, and COD in the experimental group reached 96.69%, 75.18%, 73.82%, and 90.83%, respectively, showing a significant improvement compared to the results of the control group. The main components in the control group were Dokdonella, Brevundimonas, Alishewanella, Rhodobacter, Pseudoxanthomonas, and Thauera, whereas those in the experimental group were Dokdonella, Proteocatella, Rhodobacter, Dechlomonas, and Nitrospira. Proteocatella, Dechlomonas, and Nitrosra, which were unique to the experimental group, are common bacteria used for nitrogen and phosphorus removal. This explains the difference in the sewage treatment capacity between the two groups. This study provides an alternative sewage treatment microbial flora with a reasonable production cost and high degradation efficiency for NH4+-N, TN, TP, and COD.

10.
Int J Biol Macromol ; 251: 126412, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598831

RESUMEN

ssDNA aptamers have been increasingly used to detect heavy metal ions as recognition elements due to their high affinity and specificity. However, the specific recognition and binding mechanisms between aptamers and most heavy metals were still unclear, which limits the development of aptamer-based detection methods. In this work, the interaction mechanisms of CD-2-1 aptamers with Cd2+ in aqueous solutions were investigated using molecular dynamic simulations. The most stable complex was found where Cd2+ binding at aptamer's stem-loop junction and preferred at the phosphate backbone or bases. Noteworthily, two binding modes of Cd2+ combining aptamer in aqueous solution were discovered: direct and indirect. In the former mode, Cd2+ directly coordinated O atoms of bases. For the latter, Cd2+ connected to bases with coordinated water molecules as bridges. Electrostatic interaction was found to be the main driving force, and differences of residues role between two binding modes were elucidated. Buffer molecules in aqueous solutions can stabilize aptamer-Cd2+ complex by hydrogen bonds. This study revealed the specific interaction mechanisms of aptamer with Cd2+ at an atomic level, which provided theoretical references for aptamer-based Cd2+ detection methods establishment as well as an efficient technical route of screening potential aptamers for heavy metal ions.

11.
Talanta ; 265: 124879, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392708

RESUMEN

Alkaline phosphatase (ALP) as an important biomarker as well as an index for the pasteurization degree of dairy food. However, there is a dilemma between the sensitivity and time-cost of ALP determination based on nucleic acid amplification approach. Herein, an ultrasensitive and rapid detection method for the ALP assay was developed based on entropy-driven DNA machine. In our design, the ALP catalyzed dephosphorylation of detection probe, which inhibited the digestion effect of lambda exonuclease. The remaining probe as a linker to tether the walking strand proximity to the surface of track strand modified gold nanoparticle, activating entropy-driven DNA machine. Accompany with walking strand moving, a large amount of assembled dye-labelled strand dissociated from gold nanoparticle with fluorescence recovery. More importantly, to further improve the walking efficiency, butanol was introduced to accelerated the signal amplification at interface, which short the incubation time from several hours to 5 min. Under the optimum condition, the change of fluorescence intensity was proportion to the concentration of ALP in the range from 0.05 U L-1 to 5 U L-1 with an ultralow limit of detection of 2.07 × 10-3 U L-1 was achieved, which is superior to other reported methods. Furthermore, the proposed method also successfully applied for the spiked milk sample assay with satisfactory recovery in the range of 98.83%-103.00%. This work proposed a new strategy for the application of entropy-driven DNA machine in the field of rapid and ultrasensitive detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Fosfatasa Alcalina , Butanoles , Entropía , Oro , ADN , 1-Butanol , Límite de Detección
12.
Anal Bioanal Chem ; 415(17): 3463-3474, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199793

RESUMEN

Lead contamination is a major concern in food safety and, as such, many lead detection methods have been developed, especially aptamer-based biosensors. However, the sensitivity and environmental tolerance of these sensors require improvement. A combination of different types of recognition elements is an effective way to improve the detection sensitivity and environmental tolerance of biosensors. Here, we provide a novel recognition element, an aptamer-peptide conjugate (APC), to achieve enhanced affinity of Pb2+. The APC was synthesized from Pb2+ aptamers and peptides through clicking chemistry. The binding performance and environmental tolerance of APC with Pb2+ was studied through isothermal titration calorimetry (ITC); the binding constant (Ka) was 1.76*106 M-1, indicating that the APC's affinity was increased by 62.96% and 802.56% compared with the aptamers and peptides, respectively. Besides, APC demonstrated better anti-interference (K+) than aptamer and peptide. Through the molecular dynamics (MD) simulation, we found that more binding sites and stronger binding energy between APC with Pb2+are the reasons for higher affinity between APC with Pb2+. Finally, a carboxyfluorescein (FAM)-labeled APC fluorescent probe was synthesized and a fluorescent detection method for Pb2+ was established. The limit of detection of the FAM-APC probe was calculated to be 12.45 nM. This detection method was also applied to the swimming crab and showed great potential in real food matrix detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Plomo , Aptámeros de Nucleótidos/química , Límite de Detección , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos
13.
Mikrochim Acta ; 190(3): 109, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867213

RESUMEN

A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).


Asunto(s)
Arsenitos , Teléfono Inteligente , Oligonucleótidos , Colorantes , Dispositivos Laboratorio en un Chip
14.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903586

RESUMEN

A novel aptamer-based fluorescent-sensing platform with a triple-helix molecular switch (THMS) was proposed as a switch for detecting the arsenic(III) ion. The triple helix structure was prepared by binding a signal transduction probe and arsenic aptamer. Additionally, the signal transduction probe labeled with fluorophore (FAM) and quencher (BHQ1) was employed as a signal indicator. The proposed aptasensor is rapid, simple and sensitive, with a limit of detection of 69.95 nM. The decrease in peak fluorescence intensity shows a linear dependence, with the concentration of As(III) in the range of 0.1 µM to 2.5 µM. The whole detection process takes 30 min. Moreover, the THMS-based aptasensor was also successfully used to detect As(III) in a real sample of Huangpu River water with good recoveries. The aptamer-based THMS also presents distinct advantages in stability and selectivity. The proposed strategy developed herein can be extensively applied in the field of food inspection.


Asunto(s)
Aptámeros de Nucleótidos , Arsénico , Técnicas Biosensibles , Límite de Detección , Colorantes Fluorescentes/química , Aptámeros de Nucleótidos/química
15.
Talanta ; 258: 124459, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933296

RESUMEN

In this work, a terbium MOF-based molecularly imprinted polymer (Tb-MOF@SiO2@MIP) was prepared using two ligands as organic linkers and triethanolamine (TEA) as a catalyst to improve the sensing performance and stability of the fluorescence sensors. The obtained Tb-MOF@SiO2@MIP was then characterized using a transmission electron microscope (TEM), energy dispersive spectroscopy (EDS) Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The results revealed that Tb-MOF@SiO2@MIP was successfully synthesized with a thin imprinted layer of 76 nm. The synthesized Tb-MOF@SiO2@MIP maintained 96% of its original fluorescence intensity after 44 days in aqueous environments because of appropriate coordination models between the imidazole ligands as a nitrogen donor and Tb (Ⅲ). Furthermore, TGA analysis results indicated that an increase in the thermal stability of Tb-MOF@SiO2@MIP was attributed to the thermal barrier from a MIP layer. The Tb-MOF@SiO2@MIP sensor responded well to the addition of imidacloprid (IDP) in the range of 2.07-150 ng mL-1 with a low detection limit of 0.67 ng mL-1. In vegetable samples, the sensor can quickly detect IDP levels with the average recovery ranging from 85.10 to 99.85% and RSD values ranging from 0.59 to 5.82%. The UV-vis absorption spectrum and density functional theory analysis results revealed that the inner filter effect and dynamic quenching process both contributed to the sensing process of Tb-MOF@SiO2@MIP.

16.
J Agric Food Chem ; 71(1): 96-109, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541706

RESUMEN

Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.


Asunto(s)
Neoplasias , Polisacáridos , Humanos , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Neoplasias/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico
17.
Appl Radiat Isot ; 192: 110567, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36459899

RESUMEN

PURPOSE: To investigate the error detectability limitations of an EPID-based 3D in vivo dosimetry verification system for lung stereotactic body radiation therapy (SBRT). METHODS: Thirty errors were intentionally introduced, consisting of dynamic and constant machine errors, to simulate the possible errors that may occur during delivery. The dynamic errors included errors in the output, gantry angle and MLC positions related to gantry inertial and gravitational effects, while the constant errors included errors in the collimator angle, jaw positions, central leaf positions, setup shift and thickness to simulate patient weight loss. These error plans were delivered to a CIRS phantom using the SBRT technique for lung cancer. Following irradiation of these error plans, the dose distribution was reconstructed using iViewDose™ and compared with the no error plan. RESULTS: All errors caused by the central leaf positions, dynamic MLC errors, Jaw inwards movements, setup shifts and patient anatomical changes were successfully detected. However, dynamic gantry angle and collimator angle errors were not detected in the lung case due to the rotation-symmetric target shape. The results showed that the γmean and γpassrate indicators can detect 13 (81.3%) and 14 (87.5%) of the 16 errors respectively without including the gantry angle error, collimator angle error and output error. CONCLUSIONS: In summary, iViewDose™ is an appropriate approach for detecting most types of clinical errors for lung SBRT. However, the phantom results also showed some detectability limitations of the system in terms of dynamic gantry angle and constant collimator angle errors.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Radiometría
18.
Front Oncol ; 12: 1080475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568169

RESUMEN

Purpose: Previous studies have confirmed that neoadjuvant chemoradiotherapy (nCRT) may reduce the number of lymph nodes retrieved in rectal cancer. However, it is still controversial whether it is necessary to harvest at least 12 lymph nodes for locally advanced rectal cancer (LARC) patients who underwent nCRT regardless of open or laparoscopic surgery. This study was designed to evaluate the relationship between lymph node yield (LNY) and survival in LARC patients who underwent laparoscopic TME following nCRT. Methods: Patients with LARC who underwent nCRT followed by laparoscopic TME were retrospectively analyzed. The relationship between LNY and survival of patients was evaluated, and the related factors affecting LNY were explored. To further eliminate the influence of imbalance of clinicopathological features on prognosis between groups, propensity score matching was conducted. Results: A total of 257 consecutive patients were included in our study. The median number of LNY was 10 (7 to 13) in the total cohort. There were 98 (38.1%) patients with 12 or more lymph nodes harvested (LNY ≥12 group), and 159 (61.9%) patients with fewer than 12 lymph nodes retrieved (LNY <12 group). There was nearly no significant difference between the two groups in clinicopathologic characteristics and surgical outcomes except that the age of LNY <12 group was older (P<0.001), and LNY <12 group tended to have more TRG 0 cases (P<0.060). However, after matching, when 87 pairs of patients obtained, the clinicopathological features were almost balanced between the two groups. After a median follow-up of 65 (54 to 75) months, the 5-year OS was 83.9% for the LNY ≥12 group and 83.6% for the LNY <12 group (P=0.893), the 5-year DFS was 78.8% and 73.4%, respectively (P=0.621). Multivariate analysis showed that only patient age, TRG score and ypN stage were independent factors affecting the number of LNY (all P<0.05). However, no association was found between LNY and laparoscopic surgery-related factors. Conclusions: For LARC patients who underwent nCRT followed by laparoscopic TME, the number of LNY less than 12 has not been proved to be an adverse predictor for long-term survival. There was no correlation between LNY and laparoscopic surgery-related factors.

19.
J Agric Food Chem ; 70(50): 15747-15762, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36474430

RESUMEN

Inflammatory bowel disease (IBD) is a global chronic disease with a long duration and repeated relapse. Currently, there is still a lack of effective approaches to prevent IBD. Food-derived oryzanol (ORY) possesses extensive biological activities, such as ameliorating bowel diseases, antioxidation, and antiobesity. However, the mechanism of ORY in preventing colitis remains unclear. The present research aims to explore the potential mechanism of ORY in dextran sulfate sodium (DSS)-stimulated colitis in a rat model. The results showed that the symptoms of colitis were significantly improved with the administration of ORY. Mechanismly, the expression levels of Zonula occludens-1 (ZO-1), Claudin-1, Occludin, MUC2, and TFF3 were elevated through ORY treatment, suggesting that oral ORY relieved the degree of gut barrier damage of colitis rats. Meanwhile, 16S sequencing results found that ORY supplementation increased the abundances of Alloprevotella, Roseburia, Treponema, Muribaculaceae, and Ruminococcus, which are associated with the synthesis of short-chain fatty acids (SCFAs). Moreover, GC-MS results confirmed that ORY supplementation reversed the DSS-induced reduction of acetic acid, butyric acid, and total acid. Further research indicated that ORY intervention downregulated the TLR4/NF-κB/NLRP3 pathway, which is closely linked to the expression of proinflammatory cytokines and colon injury. Taken together, ORY ameliorates DSS-stimulated gut barrier damage and inflammatory responses via the gut microbiota-TLR4/NF-κB/NLRP3 signaling axis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratas , Ácido Butírico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , FN-kappa B/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptor Toll-Like 4/genética
20.
J Food Biochem ; 46(12): e14500, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36515171

RESUMEN

Alcoholic liver disease (ALD) has become a health issue globally. Laminarin, a low molecular weight marine-derived ß-glucan, has been identified with multiple biological activities. In this study, the ameliorative effect on ALD of laminarin isolated from brown algae was investigated. Phenotypic, pathological alterations and biochemical characteristics indicated that laminarin administration (100 mg/kg/day) significantly alleviated liver injury and improved liver function in the alcohol-induced mice. Gene chip results indicated that laminarin treatment caused 52 up-regulated and 13 down-regulated genes in the hepatic tissues of alcohol-induced damage mice, and most of these genes are associated with regulation of oxidative stress (such as CYP450/glutathione-dependent antioxidation), Wnt signaling pathway, retinol metabolism, and cAMP pathway based on GO and KEGG analysis. PPI network analysis indicated that the downstream target genes lied in the hub of the net. Our experiments also confirmed the changed expressions of some target genes. Taken together, these results suggest that laminarin can ameliorate alcohol-induced damage in mice and its molecular mechanism lies in modulating anti-oxidation pathway, WNT pathway, and cAMP pathway, which regulate the expressions of downstream target genes and alleviate alcohol-induced damage. Our study provides new clue to prevent alcohol-induced damage and will be benefit to develop functional foods. PRACTICAL APPLICATIONS: This study verified the positive effect on alcoholic liver disease (ALD) of laminarin, a water-soluble brown algae-derived ß-glucan, linked by ß-(1,3) glycosidic bonds with ß-(1,6) branches. Laminarin significantly alleviated liver injury and improved liver function of ALD mice. Moreover, transcriptomics and bioinformatics analysis further revealed the gene expression patterns, hub targets, and signalings including CYP450/glutathione, Wnt, retinol metabolism, cAMP pathways regulated by laminarin. This research is the first evidence for hepatoprotective effect of laminarin against ALD and its molecular mechanism, which will be advantage to develop functional foods or adjuvant therapy of ALD.


Asunto(s)
Hepatopatías Alcohólicas , beta-Glucanos , Ratones , Animales , Vitamina A , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/genética , Etanol , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA