Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(16): 11217-11231, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38590351

RESUMEN

The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.

2.
Waste Manag ; 171: 365-374, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37757615

RESUMEN

Incineration of organic solid wastes is accompanied by the heavy metal emission through flue gas. As an inexpensive and efficient heavy metal adsorbent, the improvement of kaolinite adsorption performance for heavy metals has drawn widespread interests. In this work, the interaction mechanisms between various kaolinite surfaces and Cd/Pb species are explored through first principles calculations. The results show that the combination of Fe doping and dehydroxylation enhances the activity of kaolinite surfaces, analysis of adsorption configurations reveal that both Cd and Pb species are immobilized through chemisorption on the -H + Fe surface. At the microscopic level, further electronic structure analysis shows that the composite modified kaolinite surface has more electron transfer and more pronounced orbital hybridization and overlap compared to the original kaolinite surface, demonstrating that the modification means of dehydroxylation and Fe doping indeed enhanced the activity of the kaolinite surface, especially the activity of the O atoms in the vicinity of the Fe atom and that the O atoms are more efficiently bonded as ionic connecting Cd/Pb species for the purpose of trapping Cd/Pb species. This study points out the research direction and provides basic theoretical support for the development of new kaolinite adsorbents in the future.

3.
Sci Total Environ ; 857(Pt 3): 159712, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302402

RESUMEN

Facing the increasing demand of atmosphere pollutant control, selective catalytic reduction (SCR) technology has been widely applied in various industries for NOx abatement. However, in the condition of complicated flue gas components, the heavy metal issue is a great challenge to the catalyst deactivation and atmospheric pollution control. In this review, with the comprehensive consideration of SCR catalysts in heavy metal-rich flue gas scenarios, the distribution character of heavy metals in SCR system is firstly summarized, then the detailed interaction mechanism between heavy metals and the vanadium­titanium-based catalyst is discussed. Focusing on the mercury oxidation as well as against arsenic/lead poisoning, certain modification strategies are also concluded to develop novel SCR catalysts with multiple functions. Furthermore, the state-of-the-art technologies regarding the regeneration, the valuable metal recovery, and the harmless treatment of the spent SCR catalyst are also reported. This paper provides theoretical guidance for the manufacture of novel SCR catalysts under multiple scenarios, as well as the synergistic control of NOx and heavy metals.


Asunto(s)
Mercurio , Titanio , Vanadio , Catálisis , Oxidación-Reducción
4.
Chemosphere ; 297: 134168, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35240155

RESUMEN

The V2O5/TiO2 based selective catalytic reduction (SCR) catalysts possess not only promising capability on the denitrification of nitrogen oxides (NOx), but also certain effects on the oxidation of carbon monoxide (CO) in the flue gas. Modification of traditional SCR catalysts with certain transition metals can further improve their catalytic oxidation ability of CO. Therefore, it is of great significance to reveal the catalytic oxidation mechanism of CO for developing modified SCR catalysts to achieve the co-removal of CO and NOx. Theoretical calculations based on density functional theory (DFT) were performed to probe the comprehensive reaction mechanism of CO oxidation on M doped V2O5/TiO2 catalysts (M = Mo, Fe, and Co). The whole CO oxidation cycles include three stages, i.e., the first CO oxidation, the re-oxidation of the surface, and the second CO oxidation. The terminal oxygen and the surface oxygen formed by the adsorbed O2 all play vital roles in the whole CO oxidation cycles. The activation barriers of the rate-determining steps for CO oxidation on Fe-V2O5/TiO2 and Co-V2O5/TiO2 are much lower than that of Mo-V2O5/TiO2, which indicates Fe and Co dopants can apparently promote the CO oxidation activities of the modified SCR catalysts. Meanwhile, the electronic structure analysis confirms that Fe and Co dopants can cause electron distribution change with strong oxidation ability at the active oxygen sites.

5.
J Colloid Interface Sci ; 607(Pt 2): 1362-1372, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34583041

RESUMEN

Lead (Pb) species trigger serious poisoning of selective catalytic reduction (SCR) catalysts. To improve the Pb resistance ability, revealing the impact mechanism of Pb species on the commercial SCR catalysts from a molecular level is of great significance. Herein, first-principles calculations were applied to unveil the Pb adsorption mechanism on the vanadium-based catalysts, the results were also compared with the previous experimental findings. The intrinsic interaction mechanism between Pb and catalyst components was interpreted by clarifying the change of the catalyst electronic structures (including charge transfer, bond formation situations, and active sites reactivities). It is found that the adsorption of Pb species belongs to chemisorption, evident electron transfer with the catalyst surface is inspected and intense charge transfer indicates strong adsorption. A remarkable interaction with the V = O active sites occurs and stable Pb-O bonds are formed, which significantly changes the electronic structures of the V = O sites and inhibits the NH3 adsorption, thus suppressing the SCR activity. Finally, thermodynamic analysis was applied to elucidate the temperature influence on Pb adsorption. It is found that Pb adsorption on catalysts cannot proceed spontaneously over 500 K. At higher temperatures the adsorption is inhibited and the Pb species become less stable, which partially explains why the Pb-poisoning effect at high temperatures is relatively moderate than that at low temperatures.


Asunto(s)
Amoníaco , Vanadio , Adsorción , Catálisis , Oxidación-Reducción
6.
Chemosphere ; 275: 130057, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33667766

RESUMEN

Selenium (Se) species can deposit in selective catalytic reduction (SCR) system during the denitrification process, which is harmful to the catalyst. To improve the Se-poisoning resistance of SCR catalysts, the influence mechanism of Se species on vanadium-titanium-based catalysts should be elucidated from an atomic scale. In this paper, theoretical calculations were conducted to reveal the adsorption and interaction mechanism of Se species on V2O5-WO3(MoO3)/TiO2 surface based on the first-principles. The impact of Se species on the electronic structure of the catalyst was investigated from electron transfer, bond formation, and VO site activity. The results show that the adsorption of elementary Se (Se0) belongs to chemisorption, while SeO2 can undergo both physisorption and chemisorption. For the chemisorption of Se species, obvious charge transfer with the catalyst is observed and Se-O bond is formed, which enhances the oxidation activity of the catalyst, triggers the reaction of Se0 and SeO2 with the catalyst components to generate SeVOx and SeW(Mo)Ox. The active sites are thereby damaged and the SCR performance is reduced. The above conclusions are mutually confirmed with the previous experimental research. By studying the correlation with the adsorption energies of Se species, descriptors manifesting the Se species adsorption were initially investigated to unveil the relationship between the electronic structure and the adsorption energy. Finally, the influence of temperature on Se adsorption was investigated. The adsorption can only proceed spontaneously below 500 K and is inhibited at high temperatures.


Asunto(s)
Selenio , Compuestos de Vanadio , Adsorción , Amoníaco , Catálisis , Oxidación-Reducción , Titanio
7.
Waste Manag ; 120: 59-67, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33285374

RESUMEN

Heavy metal pollutants generated from municipal solid waste (MSW) incineration are mainly concentrated in the fly ash, among which lead species have received considerable attention due to their high content and biotoxicity. CaO is an active component in fly ash to adsorb heavy metal species. In this study, based on density functional theory (DFT) calculations, the migration and transformation mechanisms of lead species over the CaO (100) surface were investigated by calculating the adsorption configurations, energies, and electronic structures, etc. The results indicate that the adsorption of lead species over the CaO (100) surface is dominated by chemisorption, and PbCl2 molecule exhibits a stronger affinity to the CaO surface than Pb0. The dissociation of HCl molecule on the CaO (100) surface facilitates the adsorption and chemical reactivity of lead species. The chlorination of Pb0 to PbCl2 is a two-stage route. In the first stage, two HCl molecules are exothermically adsorbed on the surface without an energy barrier, and Pb0 is directly bonded to the active Cl atom, which is controlled by the Eley-Rideal mechanism. In the second stage, PbCl intermediate bonds with another Cl atom over the surface to form the PbCl2 molecule, following the Langmuir-Hinshelwood mechanism, which is also the rate-determining step. Compared with the homogeneous chlorination, CaO catalyzes the heterogeneous process to greatly reduce the oxidation energy barrier and promotes the formation of PbCl2. Consequently, CaO is able to accelerate the lead enrichment in fly ash, which is favorable for lead species purification.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Carbono , Ceniza del Carbón , Incineración , Plomo , Metales Pesados/análisis , Material Particulado , Residuos Sólidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...