Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949582

RESUMEN

Excited atomic nitrogen atoms play an important role in plasma formation in hypersonic shock-waves, as happens during spacecraft reentry and other high velocity vehicle applications. In this study, we have thoroughly studied collision induced excitation associated with two colliding nitrogen atoms in the N(4S), N(2D), and N(2P) states at collision energies up to 6 eV, using time-independent scattering calculations to determine cross sections and temperature-dependent rate coefficients. The calculations are based on potential curves and couplings determined in earlier multireference configuration interaction calculations with large basis sets, and the results are in good agreement with experiments where comparisons are possible. To properly consider the spin-orbit coupling matrix, we have developed a scaling method for treating transitions between different fine-structure components that only require calculations with two coupled states, and with this, we define accurate degeneracy factors for determining cross sections and rate coefficients that include all states. The results indicate that both spin-orbit and derivative coupling effects can play important roles in collisional excitation and quenching, and that although derivative coupling is always much stronger than spin-orbit, there are many transitions where only spin-orbit can contribute. As part of this, we identify two distinct pathways associated with N(2P) relaxation and one Auger-like mechanism leading to two N(2D) that could be important at high temperatures.

2.
Small ; : e2402847, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845471

RESUMEN

A large amount of radioactive waste is accumulated in the process of nuclear fuel preparation, causing serious pollution to the environment and abundant depleted uranium resources to be abandoned. One of the key issues affecting the development of nuclear energy is how to make full use of depleted uranium resources efficiently. Here, U element with unique coordination mode of 5f electron is spacer bonded to transition metal with 3d orbit through the adsorption and anchoring effect of MXene, thus U and Co dual doped MXene catalyst is constructed along with the comprehensive utilization of depleted uranium resources. The as-prepared U-Co/MXene catalyst demonstrates excellent overpotential of only 184 mV at -10 mA cm-2 and excellent stability up to 150 h, significantly surpassing the bare MXene substrate. Theoretical calculations indicate that the U and Co dual doping optimizes the electronic structure of MXene catalyst by forming the U-O-Co network, thereby improving the thermodynamics of H* adsorption during the catalytic transition state. This research opens up a new path for the recovery of depleted uranium resources and the development of functional actinide catalysts.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38640055

RESUMEN

Interactive image restoration aims to construct an interactive pathway between users and restoration networks, which empowers users to modulate the restoration results according to their own demands. However, existing methods are primarily limited to training their networks with predefined and simplistic synthetic degradations. Consequently, these methods often encounter significant performance degradation when confronted with real-world degradations that deviate from their assumptions. Furthermore, existing interactive image restoration approaches solely support global modulation, wherein a single modulation factor governs the reconstruction process for the entire image. In this paper, we propose a novel method to perform real-world and intricate image super-resolution in an interactive manner. Specifically, we propose a metric-learning-based degradation estimation strategy to estimate not only the overall degradation level of the entire image but also the finer-grained, pixel- wise degradation within real-world scenarios. This enables local control over the restoration results by selectively modulating the corresponding regions based on the densely-estimated degradation map. Additionally, a new metric-argumented loss is proposed to further enhance the performance of real-world image super-resolution. Through extensive experimentation, we demonstrate the efficacy of our method in achieving exceptional modulation and restoration performance in real-world image super-resolution tasks, all while maintaining an appealing model complexity.

4.
Int J Surg ; 110(6): 3839-3847, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489547

RESUMEN

BACKGROUND: Deep learning (DL)-assisted detection and segmentation of intracranial hemorrhage stroke in noncontrast computed tomography (NCCT) scans are well-established, but evidence on this topic is lacking. MATERIALS AND METHODS: PubMed and Embase databases were searched from their inception to November 2023 to identify related studies. The primary outcomes included sensitivity, specificity, and the Dice Similarity Coefficient (DSC); while the secondary outcomes were positive predictive value (PPV), negative predictive value (NPV), precision, area under the receiver operating characteristic curve (AUROC), processing time, and volume of bleeding. Random-effect model and bivariate model were used to pooled independent effect size and diagnostic meta-analysis data, respectively. RESULTS: A total of 36 original studies were included in this meta-analysis. Pooled results indicated that DL technologies have a comparable performance in intracranial hemorrhage detection and segmentation with high values of sensitivity (0.89, 95% CI: 0.88-0.90), specificity (0.91, 95% CI: 0.89-0.93), AUROC (0.94, 95% CI: 0.93-0.95), PPV (0.92, 95% CI: 0.91-0.93), NPV (0.94, 95% CI: 0.91-0.96), precision (0.83, 95% CI: 0.77-0.90), DSC (0.84, 95% CI: 0.82-0.87). There is no significant difference between manual labeling and DL technologies in hemorrhage quantification (MD 0.08, 95% CI: -5.45-5.60, P =0.98), but the latter takes less process time than manual labeling (WMD 2.26, 95% CI: 1.96-2.56, P =0.001). CONCLUSION: This systematic review has identified a range of DL algorithms that the performance was comparable to experienced clinicians in hemorrhage lesions identification, segmentation, and quantification but with greater efficiency and reduced cost. It is highly emphasized that multicenter randomized controlled clinical trials will be needed to validate the performance of these tools in the future, paving the way for fast and efficient decision-making during clinical procedure in patients with acute hemorrhagic stroke.


Asunto(s)
Aprendizaje Profundo , Hemorragias Intracraneales , Accidente Cerebrovascular , Tomografía Computarizada por Rayos X , Humanos , Hemorragias Intracraneales/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Sensibilidad y Especificidad
5.
Aging (Albany NY) ; 16(5): 4654-4669, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431285

RESUMEN

OBJECTIVE: Accurate prognostic prediction in patients with high-grade aneruysmal subarachnoid hemorrhage (aSAH) is essential for personalized treatment. In this study, we developed an interpretable prognostic machine learning model for high-grade aSAH patients using SHapley Additive exPlanations (SHAP). METHODS: A prospective registry cohort of high-grade aSAH patients was collected in one single-center hospital. The endpoint in our study is a 12-month follow-up outcome. The dataset was divided into training and validation sets in a 7:3 ratio. Machine learning algorithms, including Logistic regression model (LR), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were employed to develop a prognostic prediction model for high-grade aSAH. The optimal model was selected for SHAP analysis. RESULTS: Among the 421 patients, 204 (48.5%) exhibited poor prognosis. The RF model demonstrated superior performance compared to LR (AUC = 0.850, 95% CI: 0.783-0.918), SVM (AUC = 0.862, 95% CI: 0.799-0.926), and XGBoost (AUC = 0.850, 95% CI: 0.783-0.917) with an AUC of 0.867 (95% CI: 0.806-0 .929). Primary prognostic features identified through SHAP analysis included higher World Federation of Neurosurgical Societies (WFNS) grade, higher modified Fisher score (mFS) and advanced age, were found to be associated with 12-month unfavorable outcome, while the treatment of coiling embolization for aSAH drove the prediction towards favorable prognosis. Additionally, the SHAP force plot visualized individual prognosis predictions. CONCLUSIONS: This study demonstrated the potential of machine learning techniques in prognostic prediction for high-grade aSAH patients. The features identified through SHAP analysis enhance model interpretability and provide guidance for clinical decision-making.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/diagnóstico , Hemorragia Subaracnoidea/terapia , Pronóstico , Aprendizaje Automático , Modelos Logísticos , Algoritmos
6.
J Neurosurg ; : 1-12, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552240

RESUMEN

OBJECTIVE: The relationships between immediate bleeding severity, postoperative complications, and long-term functional outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) remain uncertain. Here, the authors apply their recently developed automated deep learning technique to quantify total bleeding volume (TBV) in patients with aSAH and investigate associations between quantitative TBV and secondary complications, adverse long-term functional outcomes, and death. METHODS: Electronic health record data were extracted for adult patients admitted to a single institution within 72 hours of aSAH onset between 2018 and 2021. An automatic deep learning model was used to fully segment and quantify TBV on admission noncontrast head CT images. Patients were subgrouped by TBV quartile, and multivariable logistic regression, restricted cubic splines, and subgroup analysis were used to explore the relationships between TBV and each clinical outcome. RESULTS: A total of 819 patients were included in the study. Sixty-six (8.1%) patients developed hydrocephalus, while 43 (5.3%) experienced rebleeding, 141 (17.2%) had delayed cerebral ischemia, 88 (10.7%) died in the 12 months after discharge, and 208 (25.7%) had a modified Rankin Scale score ≥ 3 12 months after discharge. On multivariable analysis, patients in the highest TBV quartile (> 37.94 ml) had an increased risk of hydrocephalus (adjusted OR [aOR] 4.38, 95% CI 1.61-11.87; p = 0.004), rebleeding (aOR 3.26, 95% CI 1.03-10.33; p = 0.045), death (aOR 6.92, 95% CI 1.89-25.37; p = 0.004), and 12-month disability (aOR 3.30, 95% CI 1.62-6.72; p = 0.001) compared with the lowest TBV quantile (< 8.34 ml). The risks of hydrocephalus (nonlinear, p = 0.025), rebleeding, death, and disability (linear, p > 0.05) were positively associated with TBV by restricted cubic splines. In subgroup analysis, TBV had a stronger effect on 12-month outcome in female than male patients (p for interaction = 0.0499) and on rebleeding prevalence in patients with endovascular coiling than those with surgical clipping (p for interaction = 0.008). CONCLUSIONS: Elevated TBV is associated with a greater risk of hydrocephalus, rebleeding, death, and poor prognosis.

7.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38310474

RESUMEN

We show that standard Ehrenfest dynamics does not conserve linear and angular momentum when using a basis of truncated adiabatic states. However, we also show that previously proposed effective Ehrenfest equations of motion [M. Amano and K. Takatsuka, "Quantum fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions," J. Chem. Phys. 122, 084113 (2005) and V. Krishna, "Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit," J. Chem. Phys. 126, 134107 (2007)] involving the non-Abelian Berry force do maintain momentum conservation. As a numerical example, we investigate the Kramers doublet of the methoxy radical using generalized Hartree-Fock with spin-orbit coupling and confirm that angular momentum is conserved with the proper equations of motion. Our work makes clear some of the limitations of the Born-Oppenheimer approximation when using ab initio electronic structure theory to treat systems with unpaired electronic spin degrees of freedom, and we demonstrate that Ehrenfest dynamics can offer much improved, qualitatively correct results.

8.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38205852

RESUMEN

We demonstrate that, for systems with spin-orbit coupling and an odd number of electrons, the standard fewest switches surface hopping algorithm does not conserve the total linear or angular momentum. This lack of conservation arises not so much from the hopping direction (which is easily adjusted) but more generally from propagating adiabatic dynamics along surfaces that are not time reversible. We show that one solution to this problem is to run along eigenvalues of phase-space electronic Hamiltonians H(R, P) (i.e., electronic Hamiltonians that depend on both nuclear position and momentum) with an electronic-nuclear coupling Γ · P [see Eq. (25)], and we delineate the conditions that must be satisfied by the operator Γ. The present results should be extremely useful as far as developing new semiclassical approaches that can treat systems where the nuclear, electronic orbital, and electronic spin degrees of freedom altogether are all coupled together, hopefully including systems displaying the chiral-induced spin selectivity effect.

9.
Environ Sci Pollut Res Int ; 31(5): 7111-7121, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157178

RESUMEN

Vegetable waste (VW) is a potential organic fertilizer resource. As an important way to utilize vegetable wastes, aerobic composting of VW generally has the problems of long fermentation cycle and incomplete decomposition of materials. In this study, 0.3-1.2% of potassium persulfate (KPS) was added to promote the maturity of compost. The results showed that the addition of KPS promoted the degradation of materials, accelerated the temperature rise of compost. KPS also promoted the formation of humic substances (HS). Compared with the control, HS contents of treatments with KPS addition increased by 7.81 ~ 17.52%. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis reveal the mechanism of KPS affecting the composting process: KPS stimulated the degradation of various organic substances such as lignin at high temperature stage, and the degradation of lignin could accelerate the release and decomposition of other components; KPS made the structure of the material looser, with more voids and pores, and more specific surface area of the material, which was more suitable for microbial degradation activities. Therefore, the addition of KPS can promote the decomposition of organic matter in the early stage of composting, accelerate the process of thermophilic phase, and shorten the composting process and improve product maturity.


Asunto(s)
Compostaje , Compuestos de Potasio , Sulfatos , Suelo , Verduras , Lignina , Sustancias Húmicas/análisis
10.
J Chem Phys ; 159(11)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37728203

RESUMEN

For a system without spin-orbit coupling, the (i) nuclear plus electronic linear momentum and (ii) nuclear plus orbital electronic angular momentum are good quantum numbers. Thus, when a molecular system undergoes a nonadiabatic transition, there should be no change in the total linear or angular momentum. Now, the standard surface hopping algorithm ignores the electronic momentum and indirectly equates the momentum of the nuclear degrees of freedom to the total momentum. However, even with this simplification, the algorithm still does not conserve either the nuclear linear or the nuclear angular momenta. Here, we show that one way to address these failures is to dress the derivative couplings (i.e., the hopping directions) in two ways: (i) we disallow changes in the nuclear linear momentum by working in a translating basis (which is well known and leads to electron translation factors) and (ii) we disallow changes in the nuclear angular momentum by working in a basis that rotates around the center of mass [which is not well-known and leads to a novel, rotationally removable component of the derivative coupling that we will call electron rotation factors below, cf. Eq. (96)]. The present findings should be helpful in the short term as far as interpreting surface hopping calculations for singlet systems (without spin) and then developing the new surface hopping algorithm in the long term for systems where one cannot ignore the electronic orbital and/or spin angular momentum.

11.
Entropy (Basel) ; 25(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37238564

RESUMEN

Deep learning methods, especially convolutional neural networks (CNNs), have achieved good results in the partial discharge (PD) diagnosis of gas-insulated switchgear (GIS) in the laboratory. However, the relationship of features ignored in CNNs and the heavy dependance on the amount of sample data make it difficult for the model developed in the laboratory to achieve high-precision, robust diagnosis of PD in the field. To solve these problems, a subdomain adaptation capsule network (SACN) is adopted for PD diagnosis in GIS. First, the feature information is effectively extracted by using a capsule network, which improves feature representation. Then, subdomain adaptation transfer learning is used to accomplish high diagnosis performance on the field data, which alleviates the confusion of different subdomains and matches the local distribution at the subdomain level. Experimental results demonstrate that the accuracy of the SACN in this study reaches 93.75% on the field data. The SACN has better performance than traditional deep learning methods, indicating that the SACN has potential application value in PD diagnosis of GIS.

12.
Mol Cell Endocrinol ; 571: 111938, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37100191

RESUMEN

Ubiquitination, a common type of post-translational modification, is known to affect various diseases, including cardiac hypertrophy. Ubiquitin-specific peptidase 2 (USP2) plays a crucial role in regulating cell functions, but its role in cardiac functions remains elusive. The present study aims to investigate the mechanism of USP2 in cardiac hypertrophy. Animal and cell models of cardiac hypertrophy were established using Angiotensin II (Ang II) induction. Our experiments revealed that Ang II induced USP2 downregulation in the in vitro and in vivo models. USP2 overexpression suppressed the degree of cardiac hypertrophy (decreased ANP, BNP, and ß-MHC mRNA levels, cell surface area, and ratio of protein/DNA), calcium overload (decreased Ca2+ concentration and t-CaMKⅡ and p-CaMKⅡ, and increased SERCA2), and mitochondrial dysfunction (decreased MDA and ROS and increased MFN1, ATP, MMP, and complex Ⅰ and II) both in vitro and in vivo. Mechanically, USP2 interacted with MFN2 and improved the protein level of MFN2 through deubiquitination. Rescue experiments confirmed that MFN2 downregulation neutralized the protective role of USP2 overexpression in cardiac hypertrophy. Overall, our findings suggested that USP2 overexpression mediated deubiquitination to upregulate MFN2, thus alleviating calcium overload-induced mitochondrial dysfunction and cardiac hypertrophy.


Asunto(s)
Angiotensina II , Calcio , Animales , Calcio/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Mitocondrias/metabolismo , Calcio de la Dieta
13.
J Chem Phys ; 158(2): 024115, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641414

RESUMEN

We revisit a recent proposal to model nonadiabatic problems with a complex-valued Hamiltonian through a phase-space surface hopping (PSSH) algorithm employing a pseudo-diabatic basis. Here, we show that such a pseudo-diabatic PSSH (PD-PSSH) ansatz is consistent with a quantum-classical Liouville equation (QCLE) that can be derived following a preconditioning process, and we demonstrate that a proper PD-PSSH algorithm is able to capture some geometric magnetic effects (whereas the standard fewest switches surface hopping approach cannot capture such effects). We also find that a preconditioned QCLE can outperform the standard QCLE in certain cases, highlighting the fact that there is no unique QCLE. Finally, we also point out that one can construct a mean-field Ehrenfest algorithm using a phase-space representation similar to what is done for PSSH. These findings would appear extremely helpful as far as understanding and simulating nonadiabatic dynamics with complex-valued Hamiltonians and/or spin degeneracy.

14.
J Chem Theory Comput ; 19(3): 718-732, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36655857

RESUMEN

Nonadiabatic chemical reactions involving continuous circularly polarized light (cw CPL) have not attracted as much attention as dynamics in unpolarized/linearly polarized light. However, including circularly (in contrast to linearly) polarized light allows one to effectively introduce a complex-valued time-dependent Hamiltonian, which offers a new path for control or exploration through the introduction of Berry forces. Here, we investigate several inexpensive semiclassical approaches for modeling such nonadiabatic dynamics in the presence of a time-dependent complex-valued Hamiltonian, beginning with a straightforward instantaneous adiabatic fewest-switches surface hopping (IA-FSSH) approach (where the electronic states depend on position and time), continuing to a standard Floquet fewest switches surface hopping (F-FSSH) approach (where the electronic states depend on position and frequency), and ending with an exotic Floquet phase-space surface hopping (F-PSSH) approach (where the electronic states depend on position, frequency, and momentum). Using a set of model systems with time-dependent complex-valued Hamiltonians, we show that the Floquet phase-space adiabats are the optimal choice of basis as far as accounting for Berry phase effects and delivering accuracy. Thus, the F-PSSH algorithm sets the stage for future modeling of nonadiabatic dynamics under strong externally pumped circular polarization.

15.
J Phys Chem A ; 126(50): 9535-9552, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36512438

RESUMEN

We investigate spin-dependent electron transfer in the presence of a Duschinskii rotation. In particular, we propagate dynamics for a two-level model system for which spin-orbit coupling introduces an interstate coupling of the form eiWx, which is both position(x)-dependent and complex-valued. We demonstrate that two-level systems coupled to Brownian oscillators with Duschinskii rotations (and thus entangled normal modes) can produce marked increases in transient spin polarization relative to two-level systems coupled to simple shifted harmonic oscillators. These conclusions should have significant relevance for modeling the effect of nuclear motion on chiral induced spin selectivity.

16.
J Phys Chem Lett ; 13(32): 7398-7404, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35926097

RESUMEN

Nuclear Berry curvature effects emerge from electronic spin degeneracy and can lead to nontrivial spin-dependent (nonadiabatic) nuclear dynamics. However, such effects are not captured fully by any current mixed quantum-classical method such as fewest-switches surface hopping. In this work, we present a phase-space surface-hopping (PSSH) approach to simulate singlet-triplet intersystem crossing dynamics. We show that with a simple pseudodiabatic ansatz, a PSSH algorithm can capture the relevant Berry curvature effects and make predictions in agreement with exact quantum dynamics for a simple singlet-triplet model Hamiltonian. Thus, this approach represents an important step toward simulating photochemical and spin processes concomitantly, as relevant to intersystem crossing and spin-lattice relaxation dynamics.

17.
J Chem Phys ; 157(1): 011101, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803809

RESUMEN

Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully's surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for the study of semiclassical nonadiabatic dynamics in the presence of spin-orbit coupling and/or external magnetic fields. One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic, and spin degrees of freedom, e.g., experiments displaying chiral-induced spin selectivity.

18.
Front Cardiovasc Med ; 9: 876543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694667

RESUMEN

Background: Acute myocardial infarction (AMI) is one of the most common causes of mortality around the world. Early diagnosis of AMI contributes to improving prognosis. In our study, we aimed to construct a novel predictive model for the diagnosis of AMI using an artificial neural network (ANN), and we verified its diagnostic value via constructing the receiver operating characteristic (ROC). Methods: We downloaded three publicly available datasets (training sets GSE48060, GSE60993, and GSE66360) from Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified between 87 AMI and 78 control samples. We applied the random forest (RF) and ANN algorithms to further identify novel gene signatures and construct a model to predict the possibility of AMI. Besides, the diagnostic value of our model was further validated in the validation sets GSE61144 (7 AMI patients and 10 controls), GSE34198 (49 AMI patients and 48 controls), and GSE97320 (3 AMI patients and 3 controls). Results: A total of 71 DEGs were identified, of which 68 were upregulated and 3 were downregulated. Firstly, 11 key genes in 71 DEGs were screened with RF classifier for the classification of AMI and control samples. Then, we calculated the weight of each key gene using ANN. Furthermore, the diagnostic model was constructed and named neuralAMI, with significant predictive power (area under the curve [AUC] = 0.980). Finally, our model was validated with the independent datasets GSE61144 (AUC = 0.900), GSE34198 (AUC = 0.882), and GSE97320 (AUC = 1.00). Conclusion: Machine learning was used to develop a reliable predictive model for the diagnosis of AMI. The results of our study provide potential gene biomarkers for early disease screening.

19.
J Chem Phys ; 156(17): 174113, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525658

RESUMEN

We investigate a spin-boson inspired model of electron transfer, where the diabatic coupling is given by a position-dependent phase, eiWx. We consider both equilibrium and nonequilibrium initial conditions. We show that, for this model, all equilibrium results are completely invariant to the sign of W (to infinite order). However, the nonequilibrium results do depend on the sign of W, suggesting that photo-induced electron transfer dynamics with spin-orbit coupling can exhibit electronic spin polarization (at least for some time).

20.
Int J Cardiol ; 361: 61-69, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594994

RESUMEN

Cardiovascular disease(CVD)is one of the predominant causes of death and morbidity. Mitochondria play a key role in maintaining cardiac energy metabolism. However, mitochondrial dysfunction leads to excessive production of ROS, resulting in oxidative damage to cardiomyocytes and contributing to a variety of cardiovascular diseases. In such a case, the clearance of impaired mitochondria is necessary. Currently, most studies have indicated an essential role for mitophagy in maintaining cardiac homeostasis and regulating CVD-related metabolic transition. Recent studies have implicated that PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy has been implicated in maintaining cardiomyocyte homeostasis. Here, we discuss the physiological and pathological roles of PINK1/Parkin-mediated mitophagy in the cardiovascular system, as well as potential therapeutic strategies based on PINK1/Parkin-mediated mitophagy modulation, which are of great significance for the prevention and treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Mitofagia , Enfermedades Cardiovasculares/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...